
COBRAme Documentation
Release 0.0.8

Colton Lloyd, Ali Ebrahim, Laurence Yang

May 22, 2018

Contents

1 ME-model Fundamentals 2
1.1 Coupling Constraints . 2
1.2 Biomass Dilution Constraints . 4

2 COBRAme Software Architecture 6
2.1 ProcessData . 6
2.2 MEReaction . 7
2.3 Overview . 7

3 Building a ME-model 9
3.1 Overview . 9
3.2 Initializing new ME-Models . 10
3.3 Adding Reactions without utility functions . 11
3.4 Adding Reactions using utility functions . 25

4 Reaction Properties 29
4.1 Metabolic Reactions . 29
4.2 Transcription Reactions . 32
4.3 Translation Reactions . 34
4.4 ComplexFormation Reactions . 35

5 ME-model Saving and Loading 37
5.1 As a full JSON file . 37
5.2 As a reduced JSON file . 37
5.3 As a pickle file . 38

6 Coupling Constraint Derivations 39
6.1 Parameters . 39
6.2 Derivation of mRNA coupling coefficients . 40
6.3 Derivation of ribosome coupling coefficients . 43

7 cobrame package 45
7.1 Subpackages . 45
7.2 Module contents . 69

8 Indices and tables 70

Python Module Index 71

i

COBRAme Documentation, Release 0.0.8

This resource is intended to:

1. Provide an overview of what ME-models are and how they work

2. Describe the architecture of the COBRAme code base.

3. Highlight the major object classes and how they interrelate

4. Demonstrate basic model building and editing procedures

5. Provide examples of how to query, edit and update information in a constructed ME-model

Contents 1

CHAPTER 1

ME-model Fundamentals

Models of metabolism and expression (ME-models) are unique in that they are capable of predicting the optimal
macromolecular expression required to sustain a metabolic phenotype. In other words, they are capable of making
novel predictions of the amount of individual protein, nucleotides, cofactors, etc. that the cell must synthesize in order
to grow optimally. To enable these types of predictions, ME-models differ from metabolic models (M-models) in a
few key ways:

1. ME-models are multi-scale in nature so they require the addition of coupling constraints to couple cellular
processes to each other.

2. ME-models predict the biomass composition of a growing cell thus forgoing much of the M-model biomass
composition function. For this reason, the function representing growth needs to be updated.

These two ME-model features are briefly described below. Their practical implementation is further outlined in Build-
ing a ME-model.

1.1 Coupling Constraints

Coupling constraints are required in an ME-model in order to couple a reaction flux to the synthesis of the macro-
molecule catalyzing the flux. The easiest example of this is for the coupling of metabolic enzymes to metabolic
reactions. This has the form:

𝜇

𝑘𝑒𝑓𝑓

where 𝜇 is the growth rate and 𝑘𝑒𝑓𝑓 is an approximation of the effective turnover rate for the metabolic process.
The coupling of enzyme synthesis cost to metabolic flux scales with 𝜇 to represent the dilution of macromolecules
as they are passed on the daughter cells. More macromolecules are therefore diluted at faster growth rates. Enzyme
turnover rates determine the efficiency of of an enzyme in vivo and are largly unknown for a majority of metabolic and
expression-related enzymes. Optimizing the vector of 𝑘𝑒𝑓𝑓𝑠 for the cellular processes modeled in the ME-model is an
ongoing area of research.

Currently for the E. coli ME-model, the 𝑘𝑒𝑓𝑓𝑠 are set with an average of 65 𝑠−1 and scaled by their solvent acces-
sible surface area (approximated as 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟𝑒_𝑤𝑒𝑖𝑔ℎ𝑡

3
4). A set ~125 metabolic 𝑘𝑒𝑓𝑓𝑠 were found by

2

COBRAme Documentation, Release 0.0.8

Ebrahim et. al. 2016 to be particularly important in E. coli for computing an accurate metabolic/proteomic state using
proteomics data. We suspect similar observations would be seen in other organisms.

For non metabolic macromolecules such as ribosome, mRNA, tRNA and RNA polymerase, the coupling constrains
coefficients (‘𝑘𝑒𝑓𝑓𝑠‘) are derived by essentially back-calculating the individual rates using a measured RNA-to-Protein
ratio from Scott et. al. 2010 and measured mRNA, tRNA and rRNA fractions. The coupling constraints coefficients
for these macromolecules are derived in detail in O’Brien et. al. 2013. Applying these constraints results in a final
nonlinear optimization problem (NLP) shown below. COBRAme reformulates these coupling constraints to embed
them directly into the reaction which they are used as follows:

max
𝑣,𝜇

𝜇

s.t. 𝑆𝑣 = 0

𝑣formation,Ribosome −
∑︁

𝑖∈𝑃𝑒𝑝𝑡𝑖𝑑𝑒

(︂
𝑙𝑝,𝑖

𝑐ribo𝜅𝜏
(𝜇+ 𝑟0𝜅𝜏) · 𝑣translation,𝑖

)︂
= 0

𝑣formation,RNAP −
∑︁
𝑖∈𝑇𝑈

(︂
𝑙TU,𝑖

3𝑐ribo𝜅𝜏
(𝜇+ 𝑟0𝜅𝜏) · 𝑣transcription,𝑖

)︂
= 0

𝑣formation,𝑗

−
∑︁

𝑖∈generic_tRNA𝐴𝐴

(︂(︂
1 +

𝜇

𝑘𝑒𝑓𝑓,𝑡𝑅𝑁𝐴

)︂
𝜇

𝑘𝑒𝑓𝑓,𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
𝑣charging,𝑖

)︂
= 0,

∀𝑗 ∈ 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑎𝑠𝑒

𝑣formation,𝑗 −
∑︁

𝑖∈enzymatic reaction

(︃
𝜇

𝑘eff𝑖𝑗
𝑣usage,𝑖

)︃
= 0, ∀𝑗 ∈ 𝐸𝑛𝑧𝑦𝑚𝑒

𝑣formation,𝑗 −
∑︁

𝑖∈tRNA anticodons

(𝜇+ 𝜅𝜏𝑟0)

𝜅𝜏 𝑐𝑡𝑅𝑁𝐴,𝑗
𝑣𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,𝑖 = 0, ∀𝑗 ∈ 𝑡𝑅𝑁𝐴

𝑣degredation,𝑗 −
𝑘𝑑𝑒𝑔,𝑗

3𝜅𝜏 𝑐𝑚𝑅𝑁𝐴
· 𝜇+ 𝜅𝜏𝑟0

𝜇
𝑣𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛,𝑗 = 0, ∀𝑗 ∈ 𝑚𝑅𝑁𝐴

𝑣formation,𝑗 −
(𝜇+ 𝜅𝜏𝑟0)

3𝜅𝜏 𝑐𝑚𝑅𝑁𝐴
𝑣𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛,𝑗 = 0, ∀𝑗 ∈ 𝑚𝑅𝑁𝐴

𝑣𝐿 ≤ 𝑣 ≤ 𝑣𝑈

𝜇 ≤ 𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠_𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 ≤ 𝜇

The biomass_dilution constraint is discussed below.

1.1.1 Previous ME-model Coupling Constraint Implementation

The previous iterations of ME-models applied coupling constraints using three separate reactions. An example for a
generic “enzymatic reaction” could be represented as follows:

Enzyme Priming: enzyme
𝑣0−→ enzyme_primed+𝛼 · coupling

Enzymatic Reaction: a + enzyme_primed
𝑣1−→ enzyme + b

Dilution Coupling Reaction: enzyme + coupling 𝑣2−→ ∅

Where 𝛼 is the coupling coefficient applied to “coupling”, a metabolite (constraint) which effectively determines the
minimal rate that the third dilution coupling reaction (𝑣2) must proceed. For previous ME-model implementations,
this coupling constraint was given a “_constraint_sense” in COBRApy of ‘L’ (less than or equal to) meaning that for
this toy example 𝑣0 = 𝑣1 and 𝑣2 ≥ 𝛼 · 𝑣1.

1.1. Coupling Constraints 3

https://www.ncbi.nlm.nih.gov/pubmed/27782110?dopt=Abstract
https://www.ncbi.nlm.nih.gov/pubmed/21097934
https://www.ncbi.nlm.nih.gov/pubmed/24084808

COBRAme Documentation, Release 0.0.8

1.1.2 COBRAme Coupling Constraint Implementation

With COBRAme it is assumed that the optimal ME solution will never dilute more enzyme than is required by the
coupling constraint thus constraining 𝑣2 = 𝛼 · 𝑣1 and allowing us to combine the implementation of the constraint
with the reaction that uses the enzyme to give.

a + 𝛼 · enzyme 𝑣1−→ b

The coupling constraints and coefficients were derived as in O’Brien et. al. 2013. As stated above, however, these
were implemented in the current study as equality constraints . Effectively, this means that each ME-model solution
will give the computed optimal proteome allocation for the in silico conditions. Previous ME-model formulations have
applied the constraints as inequalities thus allowing the simulation to overproduce macromolecule components. While
overproduction is seen in vivo in cells, this phenomenon would not be selected as the optimal solution. Furthermore,
using inequality constraints greatly expands the size of the possible solution space significantly increasing the time
required to solve the optimization. Reformulating the model using equality constraints thus resulted in a reduced
ME-matrix with the coupling constraints embedded directly into the reaction in which they are used.

1.2 Biomass Dilution Constraints

For metabolic models (M-models), the biomass objective function has been used to represent the amount of biomass
production that is required for the cell to double at a specified rate. The metabolites represented in the biomass function
are typically building blocks for major macromolecules (e.g. amino acids and nucleotides), cell wall components and
cofactors. The coefficients of the biomass objective function are determined from empirical measurements from a cell
growing at a measured rate. Since ME-models explicitly compute the predicted amount of RNA, protein, cofactors,
etc. necessary for growth, this concept has to be modified for ME-models.

This is accomplished via the biomass_dilution variable (reaction), which contains a biomass constraint (pseudo
metabolite) that represents the mass produced by the synthesis of each functional RNA or protein. This reaction
essentially ensured that the ME-model can only produce biomass at the rate it is being diluted (via growth and divi-
sion).

1.2.1 Implementation

For each transcription or translation reaction in an ME-model an amount of a biomass constraint (pseudo metabolite)
is created with a stoichiometry equal to the molecular weight of the mRNA or protein being made (in kDA). The below
figure shows an example of this where a translation reaction produces both the catalytic protein as well as the protein
biomass constraint. The formed protein_biomass constraint is a participant in the overall ME-model Biomas_ Dilution
reaction which restricts the total production of the major biomass components to equal the rate at which biomass is
diluted (i.e. the cell’s growth rate, 𝜇).

Some biomass constituents do not have a mechanistic function in the ME-model (e.g. cell wall components, DNA
and glycogen). These metabolites are included in the biomass_dilution reaction indentical to the M-model biomass
reaction .

1.2.2 Unit Check

The units for this contraint work out as follows:

The units of a given reaction in the ME-model are in molecules per hour.

𝑣𝑖 ⇒
𝑚𝑚𝑜𝑙

𝑔𝐷𝑊 · ℎ𝑟

1.2. Biomass Dilution Constraints 4

https://www.ncbi.nlm.nih.gov/pubmed/24084808

COBRAme Documentation, Release 0.0.8

Fig. 1.1: Biomass Dilution for iJO1366 and for a ME-model

The individual components of the biomass dilution constraints are in units of kDa.

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟_𝑤𝑒𝑖𝑔ℎ𝑡 ⇒ 𝑘𝐷𝐴[
𝑔

𝑚𝑚𝑜𝑙
]

Therefore, when the biomass dilution variable (reaction) carries flux it gives units of ℎ𝑟−1 representing the growth
rateof the cell, 𝜇

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟_𝑤𝑒𝑖𝑔ℎ𝑡 · 𝑣𝑖 ⇒ ℎ𝑟−1[𝜇]

1.2. Biomass Dilution Constraints 5

CHAPTER 2

COBRAme Software Architecture

The COBRAme codebase is constructed with the intention of including all of the metabolic processes and complexity
associated with gene expression, while still giving a final ME-model that is not prohibitively difficult to use and
interpret. To accomplish this COBRAme separates the information associated with each cellular process from the
actual ME-model reaction in which the process is modeled. We call these two major python classes ProcessData and
MEReaction, respectively. The logic behind each of these classes is briefly presented below, and a description of the
class attributes and properties is presented here in the form of a UML Diagram.

2.1 ProcessData

The previous ME-models for E. coli and T. Maritima were reconstructed by first establishing a database containing
information about all gene expression processes known in the organism being model. This included, for instance,
enzyme complex subunit stoichiometries or the E. coli transcription unit architecture. Then, when building the ME-
model, the database was queried to obtain any relevant information and incorporate this into the appropriate reactions.
For the COBRAme formulation, this database was replaced by the ProcessData “information storage” class. The
ProcessData class generally consists of attributes which use simple python types (string, dictionary, etc.) to describe
features of a biological process.

The use of the ProcessData class has the advantage of:

1. Simplifying the process of querying information associated with a cellular function

2. Allowing edits to this information which can easily be applied throughout the model without rebuilding from
scratch

3. Enabling additional computations to be performed and seamlessly accessed as ProcessData class methods

The ProcessData classes are broken into the following subclasses:

6

COBRAme Documentation, Release 0.0.8

2.2 MEReaction

COBRAme compartmentalizes the major reaction types into their own MEReaction classes. Each of these classes
contains a single update function which effectively reads in the appropriate ProcessData types, applies the coupling
constraints on the macromolecules, and assembles these components into a complete model reaction. This allows
changes made to the ProcessData describing a particular cellular process to easily be incorporated into the reactions
which it was used.

2.3 Overview

Using the major classes described above, reconstructing a ME-model can then be broken down into three steps:

1. Define and construct all necessary ProcessData objects

2. Link the ProcessData to the appropriate MEReaction instance

3. Update all MEReactions to incorporate ProcessData information into functional reactions

The overall codebase architecture is displayed below in a UML diagram. This reduced UML highlights the ways which
MEReactions and ProcessData are linked in a ME-model reconstructed using COBRAme. A full UML representation
of the COBRAme/ME-model software architecture can be downloaded here

2.2. MEReaction 7

COBRAme Documentation, Release 0.0.8

2.3. Overview 8

CHAPTER 3

Building a ME-model

In [1]: from __future__ import print_function

import cobrame
from cobrame.util import dogma, building
import cobrame.util.building
import cobra
import cobra.test
from collections import defaultdict

#import warnings
#warnings.filterwarnings('ignore')

/home/sbrg-cjlloyd/cobrapy/cobra/io/sbml3.py:24: UserWarning: Install lxml for faster SBML I/O
warn("Install lxml for faster SBML I/O")

/home/sbrg-cjlloyd/cobrapy/cobra/io/__init__.py:12: UserWarning: cobra.io.sbml requires libsbml
warn("cobra.io.sbml requires libsbml")

3.1 Overview

COBRAme is constructed entirely over COBRApy. This means that ME-model reactions will have all of the same
properties, methods, and functions as a COBRApy reaction. However, one key difference between M and ME models
is that many reactions involved in gene expression are effecively templates that are constructed identically but vary
based on characteristics of the gene being expressed. For example, a gene with a given nucleotide sequence is always
translated following the same rules provided by the codon table for that organism.

In order to facilliate the template nature of many gene expression reactions, COBRAme reactions are constructed
and their components are manipulated through the use of ProcessData classes. These act as information vessels
for holding the information assocatied with a cellular process in simple, standard datatypes such as dictionaries and
strings.

This tutorial will go step-by-step through the process of creating a generic enzyme catalyzed reaction (i.e. metabolic

9

COBRAme Documentation, Release 0.0.8

reaction):

𝑎 → 𝑏

which requires the formation and coupling of complex_ab in order to proceed.

In order for this reaction to carry flux in the model we will additionally need to first add the corresponding:

1. Transcription reactions

2. Translation reactions

3. tRNA charging reactions

4. Complex formation reactions

Once these are added we will add in the synthesis of key macromolecular components (ribosome, RNA polymerase,
etc.) and show how they are coupled to their respective reactions. The derived coupling coefficients will also be
described. For more on the derivation of the coupling coefficients, reference the supplemental text of O’brien et. al.
2013

3.2 Initializing new ME-Models

When applying some constraints in the ME-model, metabolite properties are required. For instance, to calculate
the total biomass (by molecular weight) produced by a particular macromolecule, the amino acid, nucleotide, etc.
molecular weights are required. To enable these calculations, all metabolites from iJO1366, along with their metabolite
attributes are added to the newly initialized ME-model.

Further the reactions from iJO1366 will be added to the ME-model to demonstrate ME-model solving procedures.

In [2]: # create empty ME-model
me = cobrame.MEModel('test')
ijo = cobra.test.create_test_model('ecoli')

In [3]: # Add all metabolites and reactions from iJO1366 to the new ME-model
for met in ijo.metabolites:

me.add_metabolites(met)
for rxn in ijo.reactions:

me.add_reaction(rxn)

The ME-model contains a “global_info” attribute which stores information used to calculate coupling constraints,
along with other functions. The specifics of each of these constraints will be discussed when they are implemented.

Note: k_deg will initially be set to 0. We will apply RNA degradation later in the tutorial.

In [4]: # "Translational capacity" of organism
me.global_info['kt'] = 4.5 # (in h-1)scott 2010, RNA-to-protein curve fit
me.global_info['r0'] = 0.087 # scott 2010, RNA-to-protein curve fit
me.global_info['k_deg'] = 1.0/5. * 60.0 # 1/5 1/min 60 min/h # h-1

Molecular mass of RNA component of ribosome
me.global_info['m_rr'] = 1453. # in kDa

Average molecular mass of an amino acid
me.global_info['m_aa'] = 109. / 1000. # in kDa

3.2. Initializing new ME-Models 10

https://www.ncbi.nlm.nih.gov/pubmed/24084808
https://www.ncbi.nlm.nih.gov/pubmed/24084808

COBRAme Documentation, Release 0.0.8

Proportion of RNA that is rRNA
me.global_info['f_rRNA'] = .86
me.global_info['m_nt'] = 324. / 1000. # in kDa
me.global_info['f_mRNA'] = .02

tRNA associated global information
me.global_info['m_tRNA'] = 25000. / 1000. # in kDA
me.global_info['f_tRNA'] = .12

Define the types of biomass that will be synthesized in the model
me.add_biomass_constraints_to_model(["protein_biomass", "mRNA_biomass", "tRNA_biomass", "rRNA_biomass",

"ncRNA_biomass", "DNA_biomass", "lipid_biomass", "constituent_biomass",
"prosthetic_group_biomass", "peptidoglycan_biomass"])

Define sequence of gene that will be expressed in tutorial

In [5]: sequence = ("ATG" + "TTT" * 12 + "TAT" * 12 +
"ACG" * 12 + "GAT" * 12 + "AGT" * 12 + "TGA")

3.3 Adding Reactions without utility functions

We’ll first demonstrate how transcription, translation, tRNA charging, complex formation, and metabolic reactions
can be added to a model without using any of the utility functions provided in cobrame.util.building.py.
The second half of the tutorial will show how these utility functions can be used to add these reactions.

The basic workflow for adding any reaction to a ME-model using COBRAme occurs in three steps:

1. Create the ProcessData(s) associated with the reaction and populate them with the necessary information

2. Create the MEReaction and link the appropriate ProcessData

3. Execute the MEReaction’s update method

3.3.1 Add Transcription Reaction

Add TranscribedGene metabolite to model

Transcription reactions is unique in that they occur at a transcription unit level and can code for multiple transcript
products. Therefore the nucleotide sequence of both the transcription unit and the RNA transcripts must be defined in
order to correctly construct a transcription reaction.

class cobrame.core.component.TranscribedGene(id, rna_type, nucleotide_sequence)
Metabolite class for gene created from cobrame.core.reaction.TranscriptionReaction

Parameters

• id (str) – Identifier of the transcribed gene. As a best practice, this ID should be prefixed
with ‘RNA + _’

• RNA_type (str) – Type of RNA encoded by gene sequence (mRNA, rRNA, tRNA, or
ncRNA)

• nucleotide_sequence (str) – String of base pair abbreviations for nucleotides con-
tained in the gene

left_pos
int – Left position of gene on the sequence of the (+) strain

3.3. Adding Reactions without utility functions 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

right_pos
int – Right position of gene on the sequence of the (+) strain

strand
str –

• (+) if the RNA product is on the leading strand

• (-) if the RNA product is on the comple(mentary strand

In [6]: gene = cobrame.TranscribedGene('RNA_a', 'mRNA', sequence)
me.add_metabolites([gene])

When adding the TranscribedGene above, the RNA_type and nucleotide_sequence was assigned to the
gene. This sequence cannot be determined from the transcription unit (TU) sequence because a single TU often
contains several different RNAs.

Add TranscriptionData to model

class cobrame.core.processdata.TranscriptionData(id, model, rna_products=set([]))
Class for storing information needed to define a transcription reaction

Parameters

• id (str) – Identifier of the transcription unit, typically beginning with ‘TU’

• model (cobrame.core.model.MEModel) – ME-model that the TranscriptionData is
associated with

nucleotide_sequence
str – String of base pair abbreviations for nucleotides contained in the transcription unit

RNA_products
set – IDs of cobrame.core.component.TranscribedGene that the transcription unit encodes.
Each member should be prefixed with “RNA + _”

RNA_polymerase
str – ID of the cobrame.core.component.RNAP that transcribes the transcription unit. Different
IDs are used for different sigma factors

subreactions
collections.DefaultDict(int) – Dictionary of {cobrame.core.processdata.
SubreactionData ID: num_usages} required for the transcription unit to be transcribed

In [7]: transcription_data = cobrame.TranscriptionData('TU_a',me,rna_products={'RNA_a'})
transcription_data.nucleotide_sequence = sequence

Add TranscriptionReaction to model

And point TranscriptionReaction to TranscriptionData

class cobrame.core.reaction.TranscriptionReaction(id)
Transcription of a TU to produced TranscribedGene.

RNA is transcribed on a transcription unit (TU) level. This type of reaction produces all of the RNAs contained
within a TU, as well as accounts for the splicing/excision of RNA between tRNAs and rRNAs. The appropriate
RNA_biomass constrain is produced based on the molecular weight of the RNAs being transcribed

Parameters id (str) – Identifier of the transcription reaction. As a best practice, this ID should be
prefixed with ‘transcription + _’

3.3. Adding Reactions without utility functions 12

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

In [8]: transcription_rxn = cobrame.TranscriptionReaction('transcription_TU_a')
transcription_rxn.transcription_data = transcription_data
me.add_reactions([transcription_rxn])

Update TranscriptionReaction

TranscriptionReaction.update(verbose=True)
Creates reaction using the associated transcription data and adds chemical formula to RNA products

This function adds the following components to the reaction stoichiometry (using ‘data’ as shorthand for
cobrame.core.processdata.TranscriptionData):

1. RNA_polymerase from data.RNA_polymerase w/ coupling coefficient (if present)

2. RNA products defined in data.RNA_products

3. Nucleotide reactants defined in data.nucleotide_counts

4. If tRNA or rRNA contained in data.RNA_types, excised base products

5. Metabolites + enzymes w/ coupling coefficients defined in data.subreactions (if present)

6. Biomass cobrame.core.component.Constraint corresponding to data.RNA_products and their
associated masses

7. Demand reactions for each transcript product of this reaction

Parameters verbose (bool) – Prints when new metabolites are added to the model when execut-
ing update()

In [9]: transcription_rxn.update()
print(transcription_rxn.reaction)

86 atp_c + 38 ctp_c + 12 gtp_c + 50 utp_c --> RNA_a + 59.172286 mRNA_biomass + 186 ppi_c

/home/sbrg-cjlloyd/cobrame/cobrame/core/reaction.py:813 UserWarning: RNA Polymerase () not found

Note: the RNA_polymerase complex is not included in the reaction. This will be added later

This reaction now produces a small amount of the a mRNA_biomass metabolite (constraint). This term has a co-
efficient corresponding to the molecular weight (in 𝑘𝐷𝐴) of the RNA being transcribed. This constraint will be
implemented into a 𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑠_𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 reaction with the form:

𝜇 ≤ 𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠_𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 ≤ 𝜇

A mathematical description of the biomass constraint can be found in Biomass Dilution Constraints in ME-Model
Fundamentals.

Note: This is not a complete picture of transcription because the RNA polymerase is missing.

Incorporate RNA Polymerase

For the purposes of this tutorial, we’ll skip the steps required to add the reactions to form the RNA_polymerase. The
steps however are identical to those outlined in add enzyme complexes below

class cobrame.core.component.RNAP(id)
Metabolite class for RNA polymerase complexes. Inherits from cobrame.core.component.Complex

3.3. Adding Reactions without utility functions 13

https://docs.python.org/3/library/functions.html#bool

COBRAme Documentation, Release 0.0.8

Parameters id (str) – Identifier of the RNA Polymerase.

In [10]: RNAP = cobrame.RNAP('RNA_polymerase')
me.add_metabolites(RNAP)

Associate RNA_polymerase with all TranscriptionData and update

In [11]: for data in me.transcription_data:
data.RNA_polymerase = RNAP.id

me.reactions.transcription_TU_a.update()

print(me.reactions.transcription_TU_a.reaction)

0.00088887053605567*mu + 0.000347992814865795 RNA_polymerase + 86 atp_c + 38 ctp_c + 12 gtp_c + 50 utp_c --> RNA_a + 59.172286 mRNA_biomass + 186 ppi_c

The coefficient for RNA_polymerase is the first instance in this tutorial where a coupling constraint is imposed. In this
case the constraint couples the formation of a RNA_polymerase metabolite to its transcription flux. This constraint is
formulated as in O’brien et. al. 2013, with assumption that 𝑘𝑟𝑛𝑎𝑝 = 3 · 𝑘𝑟𝑖𝑏𝑜𝑠𝑜𝑚𝑒 based on data from Proshkin et al.
2010:

𝑣𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛,𝑅𝑁𝐴𝑃,𝑗 =
𝑙𝑇𝑈,𝑗

3𝑐𝑟𝑖𝑏𝑜𝜅𝜏
𝑣𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛,𝑗(𝜇+ 𝑟0𝜅𝜏),∀𝑗 ∈ 𝑇𝑈 (3.1)

where:

• 𝜅𝜏 and 𝑟0 are phenomenological parameters from Scott et. al. 2010 that describe the linear relationship between
the observed RNA/protein ratio of E. coli and its growth rate (𝜇)

• 𝑐𝑟𝑖𝑏𝑜 = 𝑚𝑟𝑟

𝑓𝑟𝑅𝑁𝐴·𝑚𝑎𝑎
where: 𝑚𝑟𝑟 is the mass of rRNA per ribosome. 𝑓𝑟𝑅𝑁𝐴 is the fraction of total RNA that is

rRNA 𝑚𝑎𝑎 is the molecular weight of an average amino acid

• 𝑣𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛,𝑗 is the rate of transcription for 𝑇𝑈𝑗

• 𝑙𝑇𝑈,𝑗 is number of nucleotides in 𝑇𝑈𝑗

3.3.2 Add Translation Reaction

Add TranslationData to model

In order to add a TranslationData object to a ME-model the user must additionally specifify the mRNA id and protein id
of the translation reaction that will be added. This information as well as a nucleotide sequence is the only information
required to add a translation reaction.

class cobrame.core.processdata.TranslationData(id, model, mrna, protein)
Class for storing information about a translation reaction.

Parameters

• id (str) – Identifier of the gene being translated, typically the locus tag

• model (cobrame.core.model.MEModel) – ME-model that the TranslationData is
associated with

• mrna (str) – ID of the mRNA that is being translated

• protein (str) – ID of the protein product.

mRNA
str – ID of the mRNA that is being translated

3.3. Adding Reactions without utility functions 14

https://docs.python.org/3/library/stdtypes.html#str
https://www.ncbi.nlm.nih.gov/pubmed/24084808
https://www.ncbi.nlm.nih.gov/pubmed/20413502
https://www.ncbi.nlm.nih.gov/pubmed/20413502
https://www.ncbi.nlm.nih.gov/pubmed/21097934
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

protein
str – ID of the protein product.

subreactions
collections.DefaultDict(int) – Dictionary of {cobrame.core.processdata.
SubreactionData.id: num_usages} required for the mRNA to be translated

nucleotide_sequence
str – String of base pair abbreviations for nucleotides contained in the gene being translated

In [12]: data = cobrame.TranslationData('a', me, 'RNA_a', 'protein_a')
data.nucleotide_sequence = sequence

Add TranslationReaction to model

By associating the TranslationReaction with its corresponding TranslationData object and running the update function,
COBRAme will create a reaction reaction for the nucleotide sequence given based on the organisms codon table and
prespecified translation machinery.

class cobrame.core.reaction.TranslationReaction(id)
Reaction class for the translation of a TranscribedGene to a TranslatedGene

Parameters id (str) – Identifier of the translation reaction. As a best practice, this ID should be
prefixed with ‘translation + _’

In [13]: rxn = cobrame.TranslationReaction('translation_a')
rxn.translation_data = data
me.add_reaction(rxn)

Update TranslationReaction

TranslationReaction.update(verbose=True)
Creates reaction using the associated translation data and adds chemical formula to protein product

This function adds the following components to the reaction stoichiometry (using ‘data’ as shorthand for
cobrame.core.processdata.TranslationData):

1. Amino acids defined in data.amino_acid_sequence. Subtracting water to account for condensation reac-
tions during polymerization

2. Ribosome w/ translation coupling coefficient (if present)

3. mRNA defined in data.mRNA w/ translation coupling coefficient

4. mRNA + nucleotides + hydrolysis ATP cost w/ degradation coupling coefficient (if kdeg (defined in
model.global_info) > 0)

5. RNA_degradosome w/ degradation coupling coefficient (if present and kdeg > 0)

6. Protein product defined in data.protein

7. Subreactions defined in data.subreactions

8. protein_biomass cobrame.core.component.Constraint corresponding to the protein product’s
mass

9. Subtract mRNA_biomass cobrame.core.component.Constraint defined by mRNA degrada-
tion coupling coefficinet (if kdeg > 0)

Parameters verbose (bool) – Prints when new metabolites are added to the model when execut-
ing update()

3.3. Adding Reactions without utility functions 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

COBRAme Documentation, Release 0.0.8

In [14]: rxn.update()
print(rxn.reaction)

/home/sbrg-cjlloyd/cobrame/cobrame/core/reaction.py:1051 UserWarning: ribosome not found
/home/sbrg-cjlloyd/cobrame/cobrame/core/reaction.py:1094 UserWarning: RNA_degradosome not found

0.000498399634202103*mu + 0.000195123456790123 + 0.00598079561042524*(mu + 0.3915)/mu RNA_a + 12 asp__L_c + 0.276611796982167*(mu + 0.3915)/mu atp_c + 0.353897348367627*(mu + 0.3915)/mu mRNA_biomass + met__L_c + 12 phe__L_c + 12 ser__L_c + 12 thr__L_c + 12 tyr__L_c --> 0.276611796982167*(mu + 0.3915)/mu adp_c + 0.514348422496571*(mu + 0.3915)/mu amp_c + 0.227270233196159*(mu + 0.3915)/mu cmp_c + 0.0717695473251029*(mu + 0.3915)/mu gmp_c + 60.0 - 0.276611796982167*(mu + 0.3915)/mu h2o_c + 0.276611796982167*(mu + 0.3915)/mu h_c + 0.276611796982167*(mu + 0.3915)/mu pi_c + protein_a + 7.500606 protein_biomass + 0.299039780521262*(mu + 0.3915)/mu ump_c

In this case the constraint couples the formation of a mRNA metabolite to its translation flux. This constraint is
formulated as in O’brien et. al. 2013:

𝑣𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛,𝑗 =
3

𝜅𝜏 𝑐𝑚𝑅𝑁𝐴
· (𝜇+ 𝜅𝜏𝑟0)𝑣𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛,𝑗 , ∀𝑗 ∈ 𝑚𝑅𝑁𝐴 (3.2)

where:

• 𝜅𝜏 and 𝑟0 are phenomenological parameters from Scott et. al. 2010 that describe the linear relationship between
the observed RNA/protein ratio of E. coli and its growth rate (𝜇)

• 𝑐𝑚𝑅𝑁𝐴 = 𝑚𝑛𝑡

𝑓𝑚𝑅𝑁𝐴·𝑚𝑎𝑎
where: 𝑚𝑛𝑡 is the molecular weight of an average mRNA nucleotide. 𝑓𝑚𝑅𝑁𝐴 is the

fraction of total RNA that is mRNA 𝑚𝑎𝑎 is the molecular weight of an average amino acid

• 𝑣𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛,𝑗 is the rate of translation for 𝑚𝑅𝑁𝐴𝑗

Incorporate Ribosome

class cobrame.core.component.Ribosome(id)
Metabolite class for Ribosome complexes. Inherits from cobrame.core.component.Complex

Parameters id (str) – Identifier of the Ribosome.

In [15]: ribosome = cobrame.Ribosome('ribosome')
me.add_metabolites([ribosome])
me.reactions.translation_a.update()
print(me.reactions.translation_a.reaction)

0.000498399634202103*mu + 0.000195123456790123 + 0.00598079561042524*(mu + 0.3915)/mu RNA_a + 12 asp__L_c + 0.276611796982167*(mu + 0.3915)/mu atp_c + 0.353897348367627*(mu + 0.3915)/mu mRNA_biomass + met__L_c + 12 phe__L_c + 0.000874533914506385*mu + 0.00034238002752925 ribosome + 12 ser__L_c + 12 thr__L_c + 12 tyr__L_c --> 0.276611796982167*(mu + 0.3915)/mu adp_c + 0.514348422496571*(mu + 0.3915)/mu amp_c + 0.227270233196159*(mu + 0.3915)/mu cmp_c + 0.0717695473251029*(mu + 0.3915)/mu gmp_c + 60.0 - 0.276611796982167*(mu + 0.3915)/mu h2o_c + 0.276611796982167*(mu + 0.3915)/mu h_c + 0.276611796982167*(mu + 0.3915)/mu pi_c + protein_a + 7.500606 protein_biomass + 0.299039780521262*(mu + 0.3915)/mu ump_c

/home/sbrg-cjlloyd/cobrame/cobrame/core/reaction.py:1094 UserWarning: RNA_degradosome not found

This imposes a new coupling constraint for the ribosome. In this case the constraint couples the formation of a
ribosome to its translation flux. This constraint is formulated as in O’brien et. al. 2013:

𝑣𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛,𝑟𝑖𝑏𝑜,𝑗 =
𝑙𝑝,𝑗

𝑐𝑟𝑖𝑏𝑜𝜅𝜏
𝑣𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛,𝑗(𝜇+ 𝑟0𝜅𝜏),∀𝑗 ∈ 𝑚𝑅𝑁𝐴 (3.3)

where:

• 𝜅𝜏 and 𝑟0 are phenomenological parameters from Scott et. al. 2010 that describe the linear relationship between
the observed RNA/protein ratio of E. coli and its growth rate (𝜇)

• 𝑐𝑟𝑖𝑏𝑜 = 𝑚𝑟𝑟

𝑓𝑟𝑅𝑁𝐴·𝑚𝑎𝑎
where: 𝑚𝑛𝑡 is the mass of rRNA per ribosome. 𝑓𝑟𝑅𝑁𝐴 is the fraction of total RNA that is

rRNA 𝑚𝑎𝑎 is the molecular weight of an average amino acid

• 𝑣𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛,𝑗 is the rate of translation for 𝑚𝑅𝑁𝐴𝑗

• 𝑙𝑝,𝑗 is number of amino acids in peptide translated from 𝑚𝑅𝑁𝐴𝑗

Note: The above reactions do not provide a complete picture of translation in that it is missing charged tRNAs to
facillitate tRNA addition.

Below, we’ll correct this by adding in an tRNA charging reaction.

3.3. Adding Reactions without utility functions 16

https://www.ncbi.nlm.nih.gov/pubmed/24084808
https://www.ncbi.nlm.nih.gov/pubmed/21097934
https://docs.python.org/3/library/stdtypes.html#str
https://www.ncbi.nlm.nih.gov/pubmed/24084808
https://www.ncbi.nlm.nih.gov/pubmed/21097934

COBRAme Documentation, Release 0.0.8

3.3.3 Add tRNA Charging Reaction

Add tRNAData to model

In [16]: # Must add tRNA metabolite first
gene = cobrame.TranscribedGene('RNA_d', 'tRNA', sequence)
me.add_metabolites([gene])

class cobrame.core.processdata.tRNAData(id, model, amino_acid, rna, codon)
Class for storing information about a tRNA charging reaction.

Parameters

• id (str) – Identifier for tRNA charging process. As best practice, this should be fol-
low “tRNA + _ + <tRNA_locus> + _ + <codon>” template. If tRNA initiates translation,
<codon> should be replaced with START.

• model (cobrame.core.model.MEModel) – ME-model that the tRNAData is associ-
ated with

• amino_acid (str) – Amino acid that the tRNA transfers to an peptide

• rna (str) – ID of the uncharged tRNA metabolite. As a best practice, this ID should be
prefixed with ‘RNA + _’

subreactions
collections.DefaultDict(int) – Dictionary of {cobrame.core.processdata.
SubreactionData.id: num_usages} required for the tRNA to be charged

synthetase
str – ID of the tRNA synthetase required to charge the tRNA with an amino acid

synthetase_keff
float – Effective turnover rate of the tRNA synthetase

In [17]: data = cobrame.tRNAData('tRNA_d_GUA', me, 'val__L_c', 'RNA_d', 'GUA')

Add tRNAChargingReaction to model

And point tRNAChargingReaction to tRNAData

class cobrame.core.reaction.tRNAChargingReaction(id)
Reaction class for the charging of a tRNA with an amino acid

Parameters id (str) – Identifier for the charging reaction. As a best practice, ID should follow the
template “charging_tRNA + _ + <tRNA_locus> + _ + <codon>”. If tRNA initiates translation,
<codon> should be replaced with START.

In [18]: rxn = cobrame.tRNAChargingReaction('charging_tRNA_d_GUA')
me.add_reaction(rxn)
rxn.tRNA_data = data

Update tRNAChargingReaction

tRNAChargingReaction.update(verbose=True)
Creates reaction using the associated tRNA data

This function adds the following components to the reaction stoichiometry (using ‘data’ as shorthand for
cobrame.core.processdata.tRNAData):

3.3. Adding Reactions without utility functions 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

1. Charged tRNA product following template: “generic_tRNA + _ + <data.codon> + _ + <data.amino_acid>”

2. tRNA metabolite (defined in data.RNA) w/ charging coupling coefficient

3. Charged amino acid (defined in data.amino_acid) w/ charging coupling coefficient

5. Synthetase (defined in data.synthetase) w/ synthetase coupling coefficient found, in part, using
data.synthetase_keff

6. Post transcriptional modifications defined in data.subreactions

Parameters verbose (bool) – Prints when new metabolites are added to the model when execut-
ing update()

In [19]: #Setting verbose=False suppresses print statements indicating that new metabolites were created
rxn.update(verbose=False)
print(rxn.reaction)

0.000116266666666667*mu + 4.55184e-5 RNA_d + 0.000116266666666667*mu + 4.55184e-5 val__L_c --> generic_tRNA_GUA_val__L_c

This reaction creates one generic_charged_tRNA equivalement that can then be used in a translation reaction

The coefficient for RNA_d and lys__L_c are defined by:

𝑣𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛,𝑗 ≥
1

𝜅𝜏 𝑐𝑡𝑅𝑁𝐴,𝑗
(𝜇+ 𝜅𝜏𝑟0)𝑣𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,𝑗 ,∀𝑗 ∈ 𝑡𝑅𝑁𝐴 (3.4)

where:

• 𝜅𝜏 and 𝑟0 are phenomenological parameters from Scott et. al. 2010 that describe the linear relationship between
the observed RNA/protein ratio of E. coli and its growth rate (𝜇)

• 𝑐𝑡𝑅𝑁𝐴,𝑗 = 𝑚𝑡𝑅𝑁𝐴

𝑓𝑡𝑅𝑁𝐴·𝑚𝑎𝑎
where: 𝑚𝑡𝑅𝑁𝐴 is molecular weight of an average tRNA. 𝑓𝑡𝑅𝑁𝐴 is the fraction of total

RNA that is tRNA 𝑚𝑎𝑎 is the molecular weight of an average amino acid

• 𝑣𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,𝑗 is the rate of charging for 𝑡𝑅𝑁𝐴𝑗

Note: This tRNA charging reaction is still missing a tRNA synthetase which catalyzes the amino acid addition to the
uncharged tRNA.

Incorporate tRNA Synthetases

.. autoclass:: cobrame.core.component.Complex :noindex:

In [20]: synthetase = cobrame.Complex('synthetase')
me.add_metabolites(synthetase)

Associate synthetase with tRNAData and update

In [21]: data.synthetase = synthetase.id
rxn.update()
print(rxn.reaction)

0.000116266666666667*mu + 4.55184e-5 RNA_d + 4.27350427350427e-6*mu*(0.000116266666666667*mu + 1.0000455184) synthetase + 0.000116266666666667*mu + 4.55184e-5 val__L_c --> generic_tRNA_GUA_val__L_c

The synthetase coupling was reformulated from O’brien et. al. 2013 enable more modularity in the ME-model. A
more complete mathematical description of the tRNA synthetase coupling constraints can be found in the tRNA.ipynb

3.3. Adding Reactions without utility functions 18

https://docs.python.org/3/library/functions.html#bool
https://www.ncbi.nlm.nih.gov/pubmed/21097934
https://www.ncbi.nlm.nih.gov/pubmed/24084808

COBRAme Documentation, Release 0.0.8

3.3.4 Add tRNAs to Translation

Here we take advantage of an additional subclass of ProcessData, called a SubreactionData object. This
class is used to lump together processeses that occur as a result of many individual reactions, including translation
elongation, ribosome formation, tRNA modification, etc. Since each of these steps often involve an enzyme that
requires its own coupling constraint, this process allows these processes to be lumped into one reaction while still
enabling each subprocess to be modified.

TranslationData objects have an subreaction_from_sequence method that returns any subreactions that
have been added to the model and are part of translation elongation (i.e. tRNA). Since no tRNA-mediated amino acid
addition subreactions have been added to the model, the below call returns nothing.

In [22]: print(me.process_data.a.subreactions_from_sequence)

{}

/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:826 UserWarning: tRNA addition subreaction phe_addition_at_UUU not in model
/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:826 UserWarning: tRNA addition subreaction tyr_addition_at_UAU not in model
/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:826 UserWarning: tRNA addition subreaction thr_addition_at_ACG not in model
/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:826 UserWarning: tRNA addition subreaction asp_addition_at_GAU not in model
/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:826 UserWarning: tRNA addition subreaction ser_addition_at_AGU not in model

UserWarnings are returned to indicate that tRNA subreactions have not been added for each codon.

Below, we add the SubreactionData (excluding enzymes) for the addition of an amino acid using information from the
E. coli codon table. The charge tRNA does not act as an enzyme in this case because it’s coupling is handled in the
tRNAChargingReaction

Add Subreactions for tRNA addition to model

class cobrame.core.processdata.SubreactionData(id, model)

Parameters

• id (str) – Identifier of the subreaction data. As a best practice, if the subreaction data
details a modification, the ID should be prefixed with “mod + _”

• model (cobrame.core.model.MEModel) – ME-model that the SubreactionData is
associated with

enzyme
list or str or None – List of cobrame.core.component.Complex.id s for enzymes that catalyze
this process

or

String of single cobrame.core.component.Complex.id for enzyme that catalyzes this process

keff
float – Effective turnover rate of enzyme(s) in subreaction process

_element_contribution
dict – If subreaction adds a chemical moiety to a macromolecules via a modification or other means, net
element contribution of the modification process should be accounted for. This can be used to mass balance
check each of the individual processes.

Dictionary of {element: net_number_of_contributions}

In [23]: data = cobrame.SubreactionData('asp_addition_at_GAU', me)
data.stoichiometry = {'generic_tRNA_GAU_asp__L_c': -1,

'gtp_c': -1, 'gdp_c': 1, 'h_c': 1,
'pi_c': 1}

3.3. Adding Reactions without utility functions 19

https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

Now calling subreactions_from_sequence returns the number of tRNA subreactions that should be added to
the TranslationData

In [24]: translation_subreactions = me.process_data.a.subreactions_from_sequence
print(translation_subreactions)

{'asp_addition_at_GAU': 12}

/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:826 UserWarning: tRNA addition subreaction phe_addition_at_UUU not in model
/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:826 UserWarning: tRNA addition subreaction tyr_addition_at_UAU not in model
/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:826 UserWarning: tRNA addition subreaction thr_addition_at_ACG not in model
/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:826 UserWarning: tRNA addition subreaction ser_addition_at_AGU not in model

Updating TranslationData.subreactions with the tRNA subreactions incorporates this information into the
TranslationReaction

In [25]: print("Before adding tRNA subreaction")
print("------------------------------")
print(me.reactions.translation_a.reaction)
print("")
Link tranlation_data to subreactions and update
for subreaction, value in translation_subreactions.items():

me.process_data.a.subreactions[subreaction] = value
me.reactions.translation_a.update(verbose=False)
print("After adding tRNA subreaction")
print("-----------------------------")
print(me.reactions.translation_a.reaction)

Before adding tRNA subreaction

0.000498399634202103*mu + 0.000195123456790123 + 0.00598079561042524*(mu + 0.3915)/mu RNA_a + 12 asp__L_c + 0.276611796982167*(mu + 0.3915)/mu atp_c + 0.353897348367627*(mu + 0.3915)/mu mRNA_biomass + met__L_c + 12 phe__L_c + 0.000874533914506385*mu + 0.00034238002752925 ribosome + 12 ser__L_c + 12 thr__L_c + 12 tyr__L_c --> 0.276611796982167*(mu + 0.3915)/mu adp_c + 0.514348422496571*(mu + 0.3915)/mu amp_c + 0.227270233196159*(mu + 0.3915)/mu cmp_c + 0.0717695473251029*(mu + 0.3915)/mu gmp_c + 60.0 - 0.276611796982167*(mu + 0.3915)/mu h2o_c + 0.276611796982167*(mu + 0.3915)/mu h_c + 0.276611796982167*(mu + 0.3915)/mu pi_c + protein_a + 7.500606 protein_biomass + 0.299039780521262*(mu + 0.3915)/mu ump_c

After adding tRNA subreaction

0.000498399634202103*mu + 0.000195123456790123 + 0.00598079561042524*(mu + 0.3915)/mu RNA_a + 12 asp__L_c + 0.276611796982167*(mu + 0.3915)/mu atp_c + 12.0 generic_tRNA_GAU_asp__L_c + 12.0 gtp_c + 0.353897348367627*(mu + 0.3915)/mu mRNA_biomass + met__L_c + 12 phe__L_c + 0.000874533914506385*mu + 0.00034238002752925 ribosome + 12 ser__L_c + 12 thr__L_c + 12 tyr__L_c --> 0.276611796982167*(mu + 0.3915)/mu adp_c + 0.514348422496571*(mu + 0.3915)/mu amp_c + 0.227270233196159*(mu + 0.3915)/mu cmp_c + 12.0 gdp_c + 0.0717695473251029*(mu + 0.3915)/mu gmp_c + 60.0 - 0.276611796982167*(mu + 0.3915)/mu h2o_c + 12.0 + 0.276611796982167*(mu + 0.3915)/mu h_c + 12.0 + 0.276611796982167*(mu + 0.3915)/mu pi_c + protein_a + 7.500606 protein_biomass + 0.299039780521262*(mu + 0.3915)/mu ump_c

/home/sbrg-cjlloyd/cobrame/cobrame/core/reaction.py:1094 UserWarning: RNA_degradosome not found
/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:229 UserWarning: No element contribution input for subreaction (asp_addition_at_GAU), calculating based on stoichiometry instead

3.3.5 Add Complex Formation Reaction

Add ComplexData to model

For COBRAme models, the reaction gene-protein-reaction rule (GPR) is replaced with a metabolite representing the
synthesis of the enzyme(s) catalyzing a reaction. This metabolite is formed explicitly in a ME model by seperate
reaction to transcribe the gene(s) and translate the protein(s) the compose the complex.

class cobrame.core.processdata.ComplexData(id, model)
Contains all information associated with the formation of an functional enzyme complex.

This can include any enzyme complex modifications required for the enzyme to become active.

Parameters

• id (str) – Identifier of the complex data. As a best practice, this should typically use the
same ID as the complex being formed. In cases with multiple ways to form complex ‘_ +
alt’ or similar suffixes can be used.

• model (cobrame.core.model.MEModel) – ME-model that the ComplexData is as-
sociated with

3.3. Adding Reactions without utility functions 20

https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

stoichiometry
collections.DefaultDict(int) – Dictionary containing {protein_id: count} for all protein sub-
units comprising enzyme complex

subreactions
dict – Dictionary of {subreaction_data_id: count} for all complex formation subreactions/modifications.
This can include cofactor/prosthetic group binding or enzyme side group addition.

In [26]: data = cobrame.ComplexData('complex_ab', me)
data.stoichiometry = {'protein_a': 1, 'protein_b': 1}

Add ComplexFormation reaction to model

And point ComplexFormation to ComplexData .. autoclass:: cobrame.core.reaction.ComplexFormation :noin-
dex:

In [27]: rxn = cobrame.ComplexFormation('formation_complex_ab')
me.add_reaction(rxn)
rxn.complex_data_id = data.id
rxn._complex_id = data.id

Update ComplexFormation reaction

ComplexFormation.update(verbose=True)
Creates reaction using the associated complex data and adds chemical formula to complex metabolite product.

This function adds the following components to the reaction stoichiometry (using ‘data’ as shorthand for
cobrame.core.processdata.ComplexData):

1. Complex product defined in self._complex_id

2. Protein subunits with stoichiometery defined in data.stoichiometry

3. Metabolites and enzymes w/ coupling coefficients defined in data.subreactions. This often includes en-
zyme complex modifications by coenzymes or prosthetic groups.

4. Biomass cobrame.core.component.Constraint corresponding to modifications detailed in
data.subreactions, if any

Parameters verbose (bool) – Prints when new metabolites are added to the model when execut-
ing update()

In [28]: rxn.update(verbose=False)
print(me.reactions.formation_complex_ab.reaction)

protein_a + protein_b --> complex_ab

Apply modification to complex formation reaction

Many enzyme complexes in an ME-model require cofactors or prosthetic groups in order to properly function. Infor-
mation about such processes are stored as ModificationData.

For instance, we can add the modification of an iron-sulfur cluster, a common prosthetic group, by doing the following:

In [29]: # Define the stoichiometry of the modification
mod_data = cobrame.SubreactionData('mod_2fe2s_c', me)
mod_data.stoichiometry = {'2fe2s_c': -1}
this process can also be catalyzed by a chaperone

3.3. Adding Reactions without utility functions 21

https://docs.python.org/3/library/functions.html#bool

COBRAme Documentation, Release 0.0.8

mod_data.enzyme = 'complex_ba'
mod_data.keff = 65. # default value

Associate modification to complex and update() its formation

In [30]: complex_data = me.process_data.complex_ab
complex_data.subreactions['mod_2fe2s_c'] = 1

Update ComplexFormation reaction

In [31]: print('Before adding modification')
print('--------------------------')
print(me.reactions.formation_complex_ab.reaction)
me.reactions.formation_complex_ab.update()
print('\n')
print('After adding modification')
print('-------------------------')
print(me.reactions.formation_complex_ab.reaction)

Before adding modification

protein_a + protein_b --> complex_ab
Created <Complex complex_ba at 0x7f4bf69a8b38> in <ComplexFormation formation_complex_ab at 0x7f4bf5f13ef0>

After adding modification

2fe2s_c + 4.27350427350427e-6*mu complex_ba + protein_a + protein_b --> complex_ab + 0.17582 prosthetic_group_biomass

3.3.6 Add Metabolic Reaction

Add StoichiometricData to model

MetabolicReactions require, at a minimum, one corresponding StoichiometricData. StoichiometricData essentially
holds the information contained in an M-model reaction. This includes the metabolite stoichiometry and the upper and
lower bound of the reaction. As a best practice, StoichiometricData typically uses an ID equivalent to the M-model
reaction ID.

So first, we will create a StoichiometricData object to define the stoichiometry of the conversion of a to b. Only one
StoichiometricData object should be created for both reversible and irreversible reactions

class cobrame.core.processdata.StoichiometricData(id, model)
Encodes the stoichiometry for a metabolic reaction.

StoichiometricData defines the metabolite stoichiometry and upper/lower bounds of metabolic reaction

Parameters

• id (str) – Identifier of the metabolic reaction. Should be identical to the M-model reac-
tions in most cases.

• model (cobrame.core.model.MEModel) – ME-model that the StoichiometricData
is associated with

_stoichiometry
dict – Dictionary of {metabolite_id: stoichiometry} for reaction

subreactions
collections.DefaultDict(int) – Cases where multiple enzymes (often carriers ie. Acyl Carrier
Protein) are involved in a metabolic reactions.

3.3. Adding Reactions without utility functions 22

https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

upper_bound
int – Upper reaction bound of metabolic reaction. Should be identical to the M-model reactions in most
cases.

lower_bound
int – Lower reaction bound of metabolic reaction. Should be identical to the M-model reactions in most
cases.

In [32]: # unique to COBRAme, construct a stoichiometric data object with the reaction information
data = cobrame.StoichiometricData('a_to_b', me)
stoichiometry = {'a':-1, 'b': 1}
data._stoichiometry = stoichiometry
data.lower_bound = -1000
data.upper_bound = 1000

Add MetabolicReaction to model

The StoichiometricData for this reversible reaction is then assigned to two different MetabolicReactions (Due to the
enzyme dilution constraint, all enzyme catalyzed reactions must be reverisble; more on this later). The MetabolicRe-
actions require: - The associated StoichiometricData - The reverse flag set to True for reverse reactions, False for
forward reactions - Enzyme 𝐾𝑒𝑓𝑓 for reaction (discussed later, dafault=65)

These fields are then processed and the actual model reaction is created using the MetabolicReaction’s update() func-
tion

class cobrame.core.reaction.MetabolicReaction(id)
Irreversible metabolic reaction including required enzymatic complex

This reaction class’s update function processes the information contained in the complex data for the enzyme
that catalyzes this reaction as well as the stoichiometric data which contains the stoichiometry of the metabolic
conversion being performed (i.e. the stoichiometry of the M-model reaction analog)

Parameters id (str) – Identifier of the metabolic reaction. As a best practice, this ID should use
the following template (FWD=forward, REV=reverse): “<StoichiometricData.id> + _ + <FWD
or REV> + _ + <Complex.id>”

keff
float – The turnover rete (keff) couples enzymatic dilution to metabolic flux

reverse
boolean – If True, the reaction corresponds to the reverse direction of the reaction. This is necessary since
all reversible enzymatic reactions in an ME-model are broken into two irreversible reactions

In [33]: # Create a forward ME Metabolic Reaction and associate the stoichiometric data to it
rxn_fwd = cobrame.MetabolicReaction('a_to_b_FWD_complex_ab')
me.add_reaction(rxn_fwd)
rxn_fwd.stoichiometric_data = data
rxn_fwd.reverse = False
rxn_fwd.keff = 65.

Create a reverse ME Metabolic Reaction and associate the stoichiometric data to it
rxn_rev = cobrame.MetabolicReaction('a_to_b_REV_complex_ab')
me.add_reaction(rxn_rev)
rxn_rev.stoichiometric_data = data
rxn_rev.reverse = True
rxn_rev.keff = 65.

3.3. Adding Reactions without utility functions 23

https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

Update MetabolicReactions

MetabolicReaction.update(verbose=True)
Creates reaction using the associated stoichiometric data and complex data.

This function adds the following components to the reaction stoichiometry (using ‘data’ as shorthand for
cobrame.core.processdata.StoichiometricData):

1. Complex w/ coupling coefficients defined in self.complex_data.id and self.keff

2. Metabolite stoichiometry defined in data.stoichiometry. Sign is flipped if self.reverse == True

Also sets the lower and upper bounds based on self.reverse and data.upper_bound and data.lower_bound.

Parameters verbose (bool) – Prints when new metabolites are added to the model when execut-
ing update()

In [34]: rxn_fwd.update(verbose=False)
rxn_rev.update(verbose=False)
print(me.reactions.a_to_b_FWD_complex_ab.reaction)
print(me.reactions.a_to_b_REV_complex_ab.reaction)

a --> b
b --> a

Note: the 𝑘𝑒𝑓𝑓 and complex_ab is not included in the reaction since no complex has been associated to it yet

Associate enzyme with MetabolicReaction

The ComplexData object created in the previous cell can be incorporated into the MetabolicReaction using code below.

Note: the update() function is required to apply the change.

In [35]: data = me.process_data.complex_ab
me.reactions.a_to_b_FWD_complex_ab.complex_data = data
print('Forward reaction (before update): %s' %

(me.reactions.a_to_b_FWD_complex_ab.reaction))
me.reactions.a_to_b_FWD_complex_ab.update()
print('Forward reaction (after update): %s' %

(me.reactions.a_to_b_FWD_complex_ab.reaction))
print('')

me.reactions.a_to_b_REV_complex_ab.complex_data = data
print('Reverse reaction (before update): %s' %

(me.reactions.a_to_b_REV_complex_ab.reaction))
me.reactions.a_to_b_REV_complex_ab.update()
print('Reverse reaction (after update): %s' %

(me.reactions.a_to_b_REV_complex_ab.reaction))

Forward reaction (before update): a --> b
Forward reaction (after update): a + 4.27350427350427e-6*mu complex_ab --> b

Reverse reaction (before update): b --> a
Reverse reaction (after update): b + 4.27350427350427e-6*mu complex_ab --> a

3.3. Adding Reactions without utility functions 24

https://docs.python.org/3/library/functions.html#bool

COBRAme Documentation, Release 0.0.8

The coefficient for complex_ab is determined by the expression

𝜇

𝑘𝑒𝑓𝑓

which in its entirety represents the dilution of an enzyme following a cell doubling. The coupling constraint can be
summarized as followed

𝑣𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛,𝑗 = 𝜇
∑︁
𝑖

(︂
1

𝑘𝑒𝑓𝑓,𝑖
𝑣𝑢𝑠𝑎𝑔𝑒,𝑖

)︂
, ∀𝑗 ∈ 𝐸𝑛𝑧𝑦𝑚𝑒 (3.5)

Where

• 𝑣𝑢𝑠𝑎𝑔𝑒,𝑖 is the flux through the metabolic reaction

• 𝑘𝑒𝑓𝑓 is the turnover rate for the process and conveys the productivity of the enzyme complex. Physically, it can
be thought of as the number of reactions the enzyme can catalyze per cell division.

By default the 𝑘𝑒𝑓𝑓 for a MetabolicReaction is set to 65 but this can be changed using the code below.

Different Keff for forward reaction

In [36]: me.reactions.a_to_b_FWD_complex_ab.keff = .00001
me.reactions.a_to_b_FWD_complex_ab.update()

The forward and reverse direction can have differing keffs
print('Forward reaction')
print('----------------')
print(me.reactions.a_to_b_FWD_complex_ab.reaction)
print('')
print('Reverse reaction')
print('----------------')
print(me.reactions.a_to_b_REV_complex_ab.reaction)

Forward reaction

a + 27.7777777777778*mu complex_ab --> b

Reverse reaction

b + 4.27350427350427e-6*mu complex_ab --> a

3.4 Adding Reactions using utility functions

Add reactions using some of the utility functions provided in cobrame.util.building.py

3.4.1 Transcription

Using the utility functions to create the TranscribedGene metabolite has the advantage of forcing the assignment of
sequence, strand and RNA_type.

cobrame.util.building.create_transcribed_gene(me_model, locus_id, rna_type, seq,
left_pos=None, right_pos=None,
strand=None)

Creates a TranscribedGene metabolite object and adds it to the ME-model

3.4. Adding Reactions using utility functions 25

COBRAme Documentation, Release 0.0.8

Parameters

• me_model (cobrame.core.model.MEModel) – The MEModel object to which the
reaction will be added

• locus_id (str) – Locus ID of RNA product. The TranscribedGene will be added as
“RNA + _ + locus_id”

• left_pos (int or None) – Left position of gene on the sequence of the (+) strain

• right_pos (int or None) – Right position of gene on the sequence of the (+) strain

• seq (str) – Nucleotide sequence of RNA product. Amino acid sequence, codon counts,
etc. will be calculated based on this string.

• strand (str or None) –

– (+) if the RNA product is on the leading strand

– (-) if the RNA product is on the complementary strand

• rna_type (str) – Type of RNA of the product. tRNA, rRNA, or mRNA Used for deter-
mining how RNA product will be processed.

Returns Metabolite object for the RNA product

Return type cobrame.core.component.TranscribedGene

In [37]: building.create_transcribed_gene(me, 'b','tRNA', 'ATCG')
building.add_transcription_reaction(me, 'TU_b', {'b'}, sequence)
print(me.reactions.transcription_TU_b.reaction)
me.reactions.transcription_TU_b.update()

86 atp_c + 38 ctp_c + 12 gtp_c + 182 h2o_c + 50 utp_c --> RNA_b + 85 amp_c + 37 cmp_c + 11 gmp_c + 182 h_c + 186 ppi_c + 1.2817349999999998 tRNA_biomass + 49 ump_c

/home/sbrg-cjlloyd/cobrame/cobrame/core/reaction.py:813 UserWarning: RNA Polymerase () not found

3.4.2 Translation

add_translation_reaction assumes that the RNA and protein have the same locus_id. It creates the ap-
propriate TranslationData and TranslationReaction instance, links the two together and updates the
TranslationReaction.

cobrame.util.building.add_translation_reaction(me_model, locus_id, dna_sequence, up-
date=False)

Creates and adds a TranslationReaction to the ME-model as well as the associated TranslationData

A dna_sequence is required in order to add a TranslationReaction to the ME-model

Parameters

• me_model (cobra.core.model.MEModel) – The MEModel object to which the re-
action will be added

• locus_id (str) – Locus ID of RNA product. The TranslationReaction will be added as
“translation + _ + locus_id” The TranslationData will be added as “locus_id”

• dna_sequence (str) – DNA sequence of the RNA product. This string should be re-
verse transcribed if it originates on the complement strand.

• update (bool) – If True, use TranslationReaction’s update function to update and add
reaction stoichiometry

In [38]: building.add_translation_reaction(me, 'b', dna_sequence=sequence, update=True)
print(me.reactions.translation_b.reaction)

3.4. Adding Reactions using utility functions 26

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

COBRAme Documentation, Release 0.0.8

/home/sbrg-cjlloyd/cobrame/cobrame/core/reaction.py:1094 UserWarning: RNA_degradosome not found

0.000498399634202103*mu + 0.000195123456790123 + 0.00598079561042524*(mu + 0.3915)/mu RNA_b + 12 asp__L_c + 0.00448559670781893*(mu + 0.3915)/mu atp_c + 0.0076657950617284*(mu + 0.3915)/mu mRNA_biomass + met__L_c + 12 phe__L_c + 0.000874533914506385*mu + 0.00034238002752925 ribosome + 12 ser__L_c + 12 thr__L_c + 12 tyr__L_c --> 0.00448559670781893*(mu + 0.3915)/mu adp_c + 0.00598079561042524*(mu + 0.3915)/mu amp_c + 0.00598079561042524*(mu + 0.3915)/mu cmp_c + 0.00598079561042524*(mu + 0.3915)/mu gmp_c + 60.0 - 0.00448559670781893*(mu + 0.3915)/mu h2o_c + 0.00448559670781893*(mu + 0.3915)/mu h_c + 0.00448559670781893*(mu + 0.3915)/mu pi_c + protein_b + 7.500606 protein_biomass + 0.00598079561042524*(mu + 0.3915)/mu ump_c

3.4.3 Complex Formation

Alternatively, ComplexData has a create_complex_formation() function to create the sythesis reaction fol-
lowing the naming conventions. It contains an update() function which incorporates changes in the ComplexData

ComplexData.create_complex_formation(verbose=True)
creates a complex formation reaction

This assumes none exists already. Will create a reaction (prefixed by “formation”) which forms the complex

Parameters verbose (bool) – If True, print if a metabolite is added to model during update

In [39]: data = cobrame.ComplexData('complex_ba', me)
data.stoichiometry = {'protein_a': 1, 'protein_b': 1}
data.create_complex_formation()
print(me.reactions.formation_complex_ba.reaction)

protein_a + protein_b --> complex_ba

3.4.4 Metabolic Reaction

cobrame.util.building.add_metabolic_reaction_to_model(me_model, stoichiomet-
ric_data_id, directionality,
complex_id=None, sponta-
neous=False, update=False,
keff=65)

Creates and add a MetabolicReaction to a MEModel.

Parameters

• me_model (cobrame.core.model.MEModel) – MEModel that the MetabolicReac-
tion will be added to

• stoichiometric_data_id (str) – ID of the StoichiometricData for the reaction be-
ing added

• directionality (str) –

– Forward: Add reaction that occurs in the forward direction

– Reverse: Add reaction that occurs in the reverse direction

• complex_id (str or None) – ID of the ComplexData for the enzyme that catalyze
the reaction being added.

• spontaneous (bool) –

– If True and complex_id=” add reaction as spontaneous reaction

– If False and complex_id=” add reaction as orphan (CPLX_dummy catalyzed)

In [40]: stoich_data = cobrame.StoichiometricData('b_to_c', me)
stoich_data._stoichiometry = {'b': -1, 'c': 1}
stoich_data.lower_bound = 0
stoich_data.upper_bound = 1000.
building.add_metabolic_reaction_to_model(me, stoich_data.id, 'forward', complex_id='complex_ab',

update=True)
print('Reaction b_to_c')

3.4. Adding Reactions using utility functions 27

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

COBRAme Documentation, Release 0.0.8

print('---------------')
print(me.reactions.b_to_c_FWD_complex_ab.reaction)

Created <Metabolite c at 0x7f4bf6abf6d8> in <MetabolicReaction b_to_c_FWD_complex_ab at 0x7f4bf6abf7b8>
Reaction b_to_c

b + 4.27350427350427e-6*mu complex_ab --> c

3.4. Adding Reactions using utility functions 28

CHAPTER 4

Reaction Properties

The division of the ME-model into MEReaction and ProcessData classes allows the user to essentially have access to
the entire database of information used to construct the model. The following will show how this can be leveraged to
easily query, edit and update aspects of the model reactions.

In [1]: import pickle
from collections import defaultdict
from os.path import abspath, dirname, join

import pandas as pd
import cobra.test

import cobrame
import ecolime

/home/sbrg-cjlloyd/cobrapy/cobra/io/sbml3.py:24: UserWarning: Install lxml for faster SBML I/O
warn("Install lxml for faster SBML I/O")

/home/sbrg-cjlloyd/cobrapy/cobra/io/__init__.py:12: UserWarning: cobra.io.sbml requires libsbml
warn("cobra.io.sbml requires libsbml")

In [2]: # Load E. coli ME-model
ecoli_dir = dirname(abspath(ecolime.__file__))
model_dir = join(ecoli_dir, 'me_models/iJL1678b.pickle')
with open(model_dir, 'rb') as f:

me = pickle.load(f)

Load E. coli M-model
iJO1366 = cobra.test.create_test_model('ecoli')

4.1 Metabolic Reactions

These are the ME-model representations of all reactions in the metabolic reconstruction, in this case iJO1366

In [3]: print('number of reactions in iJO1366 (excluding exchange) = %i' %
len([i.id for i in iJO1366.reactions if not i.id.startswith('EX_')]))

29

COBRAme Documentation, Release 0.0.8

print('number of stoichiometric data objects = %i\n' %
len([r.id for r in me.stoichiometric_data]))

print('number of metabolic reactions = %i' %
len([r.id for r in me.reactions if type(r) == cobrame.MetabolicReaction]))

print('number of complex data objects = %i' %
len([r.id for r in me.complex_data]))

number of reactions in iJO1366 (excluding exchange) = 2259
number of stoichiometric data objects = 2282

number of metabolic reactions = 5266
number of complex data objects = 1445

Through a MetabolicReaction, the user has direct access to the StoichiometricData, ComplexData and keff used to
construct the reaction.

In [4]: rxn = me.reactions.get_by_id('E4PD_FWD_GAPDH-A-CPLX')

Access the StoichiometricData and ComplexData directly through reaction
stoich_data = rxn.stoichiometric_data
complex_data = rxn.complex_data

print(rxn.reaction + '\n')
print('This reactions is formed using the StoichiometricData (%s) and ComplexData (%s) with keff = %.2f' %

(stoich_data.id, complex_data.id, rxn.keff))

3.20942472231275e-6*mu GAPDH-A-CPLX + e4p_c + h2o_c + nad_c --> 4per_c + 2.0 h_c + nadh_c

This reactions is formed using the StoichiometricData (E4PD) and ComplexData (GAPDH-A-CPLX) with keff = 86.55

As a best practice, the ComplexData and StoichiometricData themselves should not be changed. If these need changed
then a new MetabolicReaction should be created.

4.1.1 Edit keffs

Further, the keff is an attribute of the MetabolicReaction itself and not of the ComplexData changing the ComplexData
will not affect the form of the MetabolicReaction.

In [5]: print('keff = %d: \n\t%s' % (rxn.keff, rxn.reaction))
rxn.keff = 65.
rxn.update()
print('keff = %d: \n\t%s' % (rxn.keff, rxn.reaction))

keff = 86:
3.20942472231275e-6*mu GAPDH-A-CPLX + e4p_c + h2o_c + nad_c --> 4per_c + 2.0 h_c + nadh_c

keff = 65:
4.27350427350427e-6*mu GAPDH-A-CPLX + e4p_c + h2o_c + nad_c --> 4per_c + 2.0 h_c + nadh_c

4.1.2 Edit stoichiometry

Aspects of the StoichiometricData, however, can be changed. This includes: - Reaction stoichiometry - Reaction upper
& lower bounds

Currently the stoichiometry is:

In [6]: stoich_data.stoichiometry

Out[6]: {'4per_c': 1.0,
'e4p_c': -1.0,
'h2o_c': -1.0,

4.1. Metabolic Reactions 30

COBRAme Documentation, Release 0.0.8

'h_c': 2.0,
'nad_c': -1.0,
'nadh_c': 1.0}

This can be updated to, for instance, translocate a hydrogen by performing the following

In [7]: stoich_data.stoichiometry['h_c'] = -1
stoich_data.stoichiometry['h_p'] = 1
rxn.update()
print('%s: \n\t%s' % (rxn.id, rxn.reaction))

E4PD_FWD_GAPDH-A-CPLX:
4.27350427350427e-6*mu GAPDH-A-CPLX + e4p_c + h2o_c + h_c + nad_c --> 4per_c + h_p + nadh_c

This change can be usd to update both the forward and reverse reaction

In [8]: rxn_rev = me.reactions.get_by_id(rxn.id.replace('FWD', 'REV'))
rxn_rev.update()
print('%s: \n\t%s' % (rxn_rev.id, rxn_rev.reaction))

E4PD_REV_GAPDH-A-CPLX:
4per_c + 3.20942472231275e-6*mu GAPDH-A-CPLX + h_p + nadh_c --> e4p_c + h2o_c + h_c + nad_c

A simpler approach is to updated the parent reactions for StoichiometricData. This will update any instances of the
reaction catalyzed by an isozyme.

In [9]: stoich_data.stoichiometry['h_c'] = -2
stoich_data.stoichiometry['h_p'] = 2
for r in stoich_data.parent_reactions:

r.update()
print('%s: \n\t%s' % (r.id, r.reaction))

E4PD_FWD_ERYTH4PDEHYDROG-CPLX:
0.0135143204065698*mu ERYTH4PDEHYDROG-CPLX + e4p_c + h2o_c + 2.0 h_c + nad_c --> 4per_c + 2.0 h_p + nadh_c

E4PD_FWD_GAPDH-A-CPLX:
4.27350427350427e-6*mu GAPDH-A-CPLX + e4p_c + h2o_c + 2.0 h_c + nad_c --> 4per_c + 2.0 h_p + nadh_c

E4PD_REV_ERYTH4PDEHYDROG-CPLX:
4per_c + 3.09490345954754e-6*mu ERYTH4PDEHYDROG-CPLX + 2.0 h_p + nadh_c --> e4p_c + h2o_c + 2.0 h_c + nad_c

E4PD_REV_GAPDH-A-CPLX:
4per_c + 3.20942472231275e-6*mu GAPDH-A-CPLX + 2.0 h_p + nadh_c --> e4p_c + h2o_c + 2.0 h_c + nad_c

4.1.3 Edit upper and lower reaction bounds

The upper and lower bounds can be edited through the stoichiometric data and updated to the metabolic reaction

Important: do not change the upper and lower bounds of a MetabolicReaction directly. If this is done than the
change will be overwritten when the update function is ran (shown below)

In [10]: rxn.lower_bound = -1000
print('Lower bound = %d' %rxn.lower_bound)
rxn.update()
print('Lower bound = %d' %rxn.lower_bound)

Lower bound = -1000
Lower bound = 0

Editing the reaction bounds of the StoichiometricData, however, will edit the bounds of the forward and reverse
reaction, as well as any instances of the reaction catalyzed by isozymes

In [11]: stoich_data.lower_bound = 0.
print('Upper Bounds\n--------------------------------------')
for r in stoich_data.parent_reactions:

direction = 'Forward' if r.reverse is False else 'Reverse'

4.1. Metabolic Reactions 31

COBRAme Documentation, Release 0.0.8

print('%s Before Update \n\t%s: %s' % (direction, r.id, r.upper_bound))
r.update()
print('%s After Update \n\t%s: %s' % (direction, r.id, r.upper_bound))

Upper Bounds

Forward Before Update

E4PD_FWD_ERYTH4PDEHYDROG-CPLX: 1000.0
Forward After Update

E4PD_FWD_ERYTH4PDEHYDROG-CPLX: 1000.0
Forward Before Update

E4PD_FWD_GAPDH-A-CPLX: 1000.0
Forward After Update

E4PD_FWD_GAPDH-A-CPLX: 1000.0
Reverse Before Update

E4PD_REV_ERYTH4PDEHYDROG-CPLX: 1000.0
Reverse After Update

E4PD_REV_ERYTH4PDEHYDROG-CPLX: 0
Reverse Before Update

E4PD_REV_GAPDH-A-CPLX: 1000.0
Reverse After Update

E4PD_REV_GAPDH-A-CPLX: 0

4.2 Transcription Reactions

In [12]: print('number of transcription reactions = %i' %
len([r.id for r in me.reactions if type(r) == cobrame.TranscriptionReaction]))

print('number of transcription data objects = %i' % len(list(me.transcription_data)))
print('number of transcribed genes (RNA) = %i' %

len([m.id for m in me.metabolites if type(m) == cobrame.TranscribedGene]))

number of transcription reactions = 1447
number of transcription data objects = 1447
number of transcribed genes (RNA) = 1679

4.2.1 TranscribedGene (RNA) metabolite properties

Transciption occurs via operons contained within the organisms genome or transcription unit (TU). This means that
often, a transcribed region will code for multiple RNAs. The E. coli ME-model has 4 possible RNA types that can be
transcribed: - mRNA - tRNA - rRNA - ncRNA (noncoding RNA)

mRNAs can then translated directly from the full transcribed TU, while rRNA, tRNA and ncRNA are spliced out of
the TU by endonucleases. In these cases, in order to know which bases need excized, the RNA metabolites (Tran-
scribedGene) themselves have to store information such as: - DNA strand, left and right genome position to identify
which TU the RNA is a part of - RNA type to determine whether it needs excised from the TU - nucleotide sequence
to determine bases that do/do not need excised if not mRNA and the RNA mass for biomass constraint

An example of a TranscribedGene’s attributes is shown below

In [13]: pd.DataFrame({i: str(v) for i, v in me.metabolites.RNA_b3201.__dict__.items() if not i.startswith('_') and v},
index=['Atribute Values']).T

Out[13]: Atribute Values
RNA_type mRNA
formula C6890H7816N2720O5091P726
id RNA_b3201

4.2. Transcription Reactions 32

COBRAme Documentation, Release 0.0.8

left_pos 3341965
nucleotide_sequence ATGGCAACATTAACTGCAAAGAACCTTGCAAAAGCCTATAAAGGCC...
right_pos 3342691
strand +

4.2.2 TranscriptionReaction/TranscriptionData properties

Each TranscriptionReaction in a COBRAme ME-model is associated with exactly one TranscriptionData which in-
cludes everything necessary to define a reaction. This includes: - subreactions To handle enzymatic processes not
performed by RNA polymerase - RNA Polymerase Different RNA polymerase metabolite for different sigma factors
- RNA Products TUs often contain more than one RNA in sequence - Nucleotide sequence

The TranscriptionData for TU containing the gene above is shown below

In [14]: rxn = me.reactions.transcription_TU_8398_from_RPOE_MONOMER
data = rxn.transcription_data
pd.DataFrame({i: str(v) for i, v in data.__dict__.items()}, index=['Atribute Values']).T

Out[14]: Atribute Values
RNA_polymerase RNAPE-CPLX
RNA_products {'RNA_b3201', 'RNA_b3202'}
_model iJL1678b-ME
_parent_reactions {'transcription_TU_8398_from_RPOE_MONOMER'}
id TU_8398_from_RPOE_MONOMER
nucleotide_sequence ACAAACTCAGCCTTAATCTTGTGCTTGCCAGCTCACTTCTGGCCGC...
subreactions defaultdict(<class 'int'>, {'Transcription_nor...

This reaction currently uses a subreaction called Transcription_normal_rho_dependent to account for the elongation
factors etc. associated with transcription. This TU also requires a rho factor to terminate transcription. These com-
plexes can be removed from the reaction by running the following

In [15]: print('with subreactions: \n' + rxn.reaction)
print('--------------------')
data.subreactions = {}
for r in data.parent_reactions:

r.update()
print('\nwithout subreactions: \n' + rxn.reaction)

with subreactions:
4.27350427350427e-6*mu GreA_mono + 4.27350427350427e-6*mu GreB_mono + 4.27350427350427e-6*mu Mfd_mono_mod_1:mg2 + 4.27350427350427e-6*mu NusA_mono + 4.27350427350427e-6*mu NusG_mono + 0.0218585689888099*mu + 0.00855762975911906 RNAPE-CPLX + 4.27350427350427e-6*mu Rho_hexa_mod_3:mg2 + 4.27350427350427e-6*mu RpoZ_mono_mod_1:mg2 + 1020.0 atp_c + 1181 ctp_c + 1190 gtp_c + 3.0 h2o_c + 1186 utp_c --> RNA_b3201 + RNA_b3202 + 3.0 adp_c + 3.0 h_c + 691.702633 mRNA_biomass + 3.0 pi_c + 4574 ppi_c

without subreactions:
0.0218585689888099*mu + 0.00855762975911906 RNAPE-CPLX + 1017 atp_c + 1181 ctp_c + 1190 gtp_c + 1186 utp_c --> RNA_b3201 + RNA_b3202 + 691.702633 mRNA_biomass + 4574 ppi_c

This poses a problem where, if RNA_b3201 and RNA_b3202 are not required in equal amounts, the model will become
infeasible. To accound for this, all RNAs have a demand reaction associated with them. mRNA_biomass is consumed
for each demand reaction with a coefficient equal to the molecular weight of each RNA (in kDa). This prevents the
model from overproducing RNA to increase biomass production, and therefore growth rate, in some instances. More
on the implications of the biomass constraint can be found in ME-Model Fundamentals

In [16]: for rna in data.RNA_products:
r = me.reactions.get_by_id('DM_' + rna)
print('%s: %s' % (r.id, r.reaction))

DM_RNA_b3201: RNA_b3201 + 232.671391 mRNA_biomass -->
DM_RNA_b3202: RNA_b3202 + 459.03124199999996 mRNA_biomass -->

As is, this reaction produces two mRNAs so no nucleotides are excised. If one or both is changed to a stable RNA
(rRNA, tRNA or ncRNA) bases will be excised.

4.2. Transcription Reactions 33

COBRAme Documentation, Release 0.0.8

In [17]: me.metabolites.RNA_b3202.RNA_type = 'rRNA'
for r in data.parent_reactions:

r.update()
print(r.reaction)

0.0218585689888099*mu + 0.00855762975911906 RNAPE-CPLX + 1017 atp_c + 1181 ctp_c + 1190 gtp_c + 2414 h2o_c + 1186 utp_c --> RNA_b3201 + RNA_b3202 + 557 amp_c + 605 cmp_c + 613 gmp_c + 2414 h_c + 232.671391 mRNA_biomass + 4574 ppi_c + 459.03124199999996 rRNA_biomass + 639 ump_c

Changing RNA_b3202 to an rRNA and updating the transcription reaction causes both of the RNAs to now be excised
from the TU, as indicated by the nucleotide monophosphates that appear in the products. This is not a complete
picture because this process is catalyzes by an endonuclease, whose activity can be incorporated as ModificationData.
Updating the reaction after adding these processes incorporates

In [18]: data.subreactions['rRNA_containing_excision'] = len(data.RNA_products) * 2
data.subreactions['RNA_degradation_machine'] = len(data.RNA_products) * 2
data.subreactions['RNA_degradation_atp_requirement'] = sum(data.excised_bases.values())
for r in data.parent_reactions:

r.update()
print(r.reaction)

0.0218585689888099*mu + 0.00855762975911906 RNAPE-CPLX + 1.70940170940171e-5*mu RNA_degradosome + 1620.5 atp_c + 1181 ctp_c + 1190 gtp_c + 3017.5 h2o_c + 1.70940170940171e-5*mu rRNA_containing_excision_machinery + 1186 utp_c --> RNA_b3201 + RNA_b3202 + 603.5 adp_c + 557 amp_c + 605 cmp_c + 613 gmp_c + 3017.5 h_c + 232.671391 mRNA_biomass + 603.5 pi_c + 4574 ppi_c + 459.03124199999996 rRNA_biomass + 639 ump_c

4.3 Translation Reactions

In [19]: print('number of translation reactions = %i' %
len([r.id for r in me.reactions if type(r) == cobrame.TranslationReaction]))

print('number of translation data objects = %i' % len(list(me.translation_data)))
print('number of translated genes (proteins) = %i' %

len([m.id for m in me.metabolites if type(m) == cobrame.TranslatedGene]))

number of translation reactions = 1569
number of translation data objects = 1569
number of translated genes (proteins) = 1569

4.3.1 TranslatedGene (Protein) metabolite properties

For COBRAme ME-models, proteins are translated directly from mRNA metabolites not from TUs. This means that
all information required to construct a TranslationReaction can be found in its TranslationData therefore no extra
information is contained in a TranslatedGene object.

4.3.2 TranslationReaction/TranslationData properties

Each TranslationReaction in a COBRAme ME-model is associated with exactly one TranslationData which includes
everything necessary to define the reaction. This includes: - subreactions To handle enzymatic processes not per-
formed by ribosome and incorporate tRNAs - mRNA ID of mRAN being translated - term_enzyme Enzyme that
catalyzes translation termination - Nucleotide sequence

The TranslationData for a TranslationReaction is shown below

In [20]: rxn = me.reactions.translation_b2020
data = rxn.translation_data
pd.DataFrame({i: str(v) for i, v in data.__dict__.items()}, index=['Atribute Values']).T

Out[20]: Atribute Values
_model iJL1678b-ME
_parent_reactions {'translation_b2020'}

4.3. Translation Reactions 34

COBRAme Documentation, Release 0.0.8

id b2020
mRNA RNA_b2020
nucleotide_sequence ATGAGCTTTAACACAATCATTGACTGGAATAGCTGTACTGCGGAGC...
protein protein_b2020
subreactions defaultdict(<class 'int'>, {'met_addition_at_A...

The rest of the information required to define a translation reaction can be dynamically computed from these attributes.

For example, the amino acid sequence is calculated from the nucleotide sequence with:

In [21]: str(data.amino_acid_count)

Out[21]: "defaultdict(<class 'int'>, {'met__L_c': 7, 'ser__L_c': 34, 'phe__L_c': 12, 'asn__L_c': 13, 'thr__L_c': 30, 'ile__L_c': 22, 'asp__L_c': 22, 'trp__L_c': 2, 'cys__L_c': 7, 'ala__L_c': 63, 'glu__L_c': 28, 'gln__L_c': 23, 'arg__L_c': 21, 'leu__L_c': 39, 'pro__L_c': 22, 'val__L_c': 36, 'lys__L_c': 17, 'gly_c': 24, 'tyr__L_c': 7, 'his__L_c': 5})"

The codon count from the sequence can be used to determine the subreaction required for charged tRNA-mediated
amino acid addition.

In [22]: str(data.subreactions_from_sequence)

Out[22]: "{'met_addition_at_AUG': 6, 'ser_addition_at_AGC': 12, 'phe_addition_at_UUU': 6, 'asn_addition_at_AAC': 10, 'thr_addition_at_ACA': 2, 'ile_addition_at_AUC': 9, 'ile_addition_at_AUU': 12, 'asp_addition_at_GAC': 8, 'trp_addition_at_UGG': 2, 'asn_addition_at_AAU': 3, 'cys_addition_at_UGU': 3, 'thr_addition_at_ACU': 7, 'ala_addition_at_GCG': 19, 'glu_addition_at_GAG': 12, 'gln_addition_at_CAA': 5, 'arg_addition_at_CGC': 12, 'gln_addition_at_CAG': 18, 'leu_addition_at_CUG': 23, 'leu_addition_at_UUA': 4, 'pro_addition_at_CCG': 17, 'ser_addition_at_UCC': 6, 'ala_addition_at_GCC': 25, 'ser_addition_at_UCU': 5, 'glu_addition_at_GAA': 16, 'thr_addition_at_ACC': 14, 'val_addition_at_GUU': 7, 'asp_addition_at_GAU': 14, 'leu_addition_at_CUC': 4, 'val_addition_at_GUG': 17, 'lys_addition_at_AAA': 12, 'ala_addition_at_GCA': 11, 'gly_addition_at_GGC': 12, 'arg_addition_at_CGG': 1, 'tyr_addition_at_UAC': 5, 'lys_addition_at_AAG': 5, 'thr_addition_at_ACG': 7, 'leu_addition_at_CUA': 2, 'val_addition_at_GUA': 7, 'phe_addition_at_UUC': 6, 'his_addition_at_CAC': 5, 'pro_addition_at_CCA': 2, 'arg_addition_at_CGU': 8, 'cys_addition_at_UGC': 4, 'val_addition_at_GUC': 5, 'ala_addition_at_GCU': 8, 'ser_addition_at_UCA': 6, 'gly_addition_at_GGG': 4, 'leu_addition_at_UUG': 3, 'tyr_addition_at_UAU': 2, 'pro_addition_at_CCU': 1, 'ser_addition_at_AGU': 1, 'leu_addition_at_CUU': 3, 'gly_addition_at_GGU': 8, 'pro_addition_at_CCC': 2, 'ser_addition_at_UCG': 4, 'ile_addition_at_AUA': 1}"

Changing the nucleotide sequence will automically update these values.

In [23]: data.nucleotide_sequence = 'ATGAGCTTTAAC'
print('Elongation Subreactions')
print(str(data.subreactions_from_sequence))
print('\nOne of each start subreaction')
print(str(data.add_initiation_subreactions()))
print('\nNo termination subreaction (AAC) not valid stop codon')
print(str(data.add_termination_subreactions()))

Elongation Subreactions
{'ser_addition_at_AGC': 1, 'phe_addition_at_UUU': 1}

One of each start subreaction
None

No termination subreaction (AAC) not valid stop codon
None

/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:888 UserWarning: RNA_b2020 starts with 'AUG' which is not a start codon
/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:925 UserWarning: No termination enzyme for RNA_b2020

Stop codons are defined for the organism beforehand. Changing the sequence to a valid stop codon corrects this

In [24]: data.nucleotide_sequence = 'ATGAGCTTTTAA'
print('Termination subreaction')
print(str(data.add_termination_subreactions()))

Termination subreaction
None

/home/sbrg-cjlloyd/cobrame/cobrame/core/processdata.py:925 UserWarning: No termination enzyme for RNA_b2020

4.4 ComplexFormation Reactions

In [25]: print('number of complex formation reactions = %i' %
len([r.id for r in me.reactions if type(r) == cobrame.ComplexFormation]))

print('number of complex data objects = %i' % len(list(me.complex_data)))
print('')

4.4. ComplexFormation Reactions 35

COBRAme Documentation, Release 0.0.8

print('number of complexes = %i' %
len([m.id for m in me.metabolites if type(m) == cobrame.Complex]))

number of complex formation reactions = 1445
number of complex data objects = 1445

number of complexes = 1538

some complexes are modified in a metabolic process (e.g. Acyl Carrier Protein sidechain reactions) ### Complex
Metabolite Properties Like TranslatedGenes, Complex metabolites do not need to store any additional information.
ComplexFormation / ComplexData Properties Each ComplexFormation reaction in a COBRAme ME-model is
associated with exactly one ComplexData which includes everything necessary to define the reaction. This includes:
- modification To define the modifications by prosthetic groups or cofactors that can be required for the complex to
catalyze cellular processes - stoichiometry Stoichiometry of the protein subunits

The ComplexData for a ComplexFormation reaction is shown below

In [26]: rxn = me.reactions.get_by_id('formation_2OXOGLUTARATEDEH-CPLX_mod_mg2_mod_lipo')
data = me.process_data.get_by_id(rxn.complex_data_id)
pd.DataFrame({i: str(v) for i, v in data.__dict__.items()}, index=['Atribute Values']).T

Out[26]: Atribute Values
_complex_id None
_model iJL1678b-ME
_parent_reactions {'AKGDH_FWD_2OXOGLUTARATEDEH-CPLX_mod_mg2_mod_...
id 2OXOGLUTARATEDEH-CPLX_mod_mg2_mod_lipo
stoichiometry defaultdict(<class 'float'>, {'protein_b0726':...
subreactions {'mod_mg2_c': 1.0, 'mod_lipo_c': 1.0}

This complex has two modification mod_lipo_c and mod_mg_c. You can view the properties of these modifications
by accessing their ModificationData objects.

In [27]: for mod in data.subreactions:
mod_data = me.process_data.get_by_id(mod)
print(mod_data.id)
for key, value in mod_data.__dict__.items():

if not key.startswith('_') and value:
print('\t', key, value)

mod_mg2_c
id mod_mg2_c
stoichiometry {'mg2_c': -1}
keff 65.0

mod_lipo_c
id mod_lipo_c
stoichiometry {'lipoamp_c': -1, 'amp_c': 1, 'h_c': 2}
enzyme EG11796-MONOMER
keff 65.0

The information in the ModificationData and ComplexData are assembled in the ComplexFormation reaction shown
below

In [28]: print(rxn.reaction)

4.27350427350427e-6*mu EG11796-MONOMER + lipoamp_c + mg2_c + 2.0 protein_b0116 + 12.0 protein_b0726 + 24.0 protein_b0727 --> 2OXOGLUTARATEDEH-CPLX_mod_mg2_mod_lipo + amp_c + 2.0 h_c + 0.21160733999999998 prosthetic_group_biomass

4.4. ComplexFormation Reactions 36

CHAPTER 5

ME-model Saving and Loading

There are currently 3 methods that can be used to save/load an ME-model using COBRAme: 1. As a full JSON file 2.
As a reduced JSON file 3. As a pickle file

5.1 As a full JSON file

This is the recommended way to save, load and share COBRAme ME-models in full detail. This will include all of the
model’s functionality and information (MEReaction, ProcessData, etc). It uses a defined JSONSCHEMA found
in cobrame.io.

Saving and loading a full ME-model (me_model) as a JSON can be done using:

In []: from cobrame.io.json import save_json_me_model, load_json_me_model
save_json_me_model(me_model, '[save_loc]/model.json')

Then loading can be done with

In []: new_me_model = load_json_me_model('[save_loc]/model.json')

where new_me_model is of type cobrame.MEModel

5.2 As a reduced JSON file

Alternatively, ME-models can be saved as a COBRApy model. This storage type loses all the additional information
contained in a full ME-model, but retains the stoichiometry of all the reactions. In other words, it behaves like an M-
model with symbolic mu terms in metabolic coefficients and reaction bounds. Therefore it will give identical solutions
compared to the full model, but all additional ME-model functionality will be lost.

Saving and loading a reduced Me-model (me_model) as a JSON can be done using:

In []: from cobrame.io.json import save_reduced_json_me_model, load_reduced_json_me_model
save_reduced_json_me_model(me_model, '[save_loc]/model.json')

Then loading can be done with

37

COBRAme Documentation, Release 0.0.8

In []: new_me_model = load_reduced_json_me_model('[save_loc]/model.json')

where new_me_model is of type cobra.Model

5.3 As a pickle file

This is the quickest way to save a ME-model in full detail. It can be accomplished using python’s pickle dump/load
methods. A ME-model named me_model can be saved follows.

In []: import pickle
with open('[save_loc]/model.pickle', 'wb') as f:

pickle.dump(me_model, f)

It can then be loaded with:

In []: with open('[save_loc]/model.pickle', 'wb') as f:
new_me_model = pickle.load(f)

This is not a recommended way to save a ME-model when sharing or for use over the long term as it can break when
using different software versions.

5.3. As a pickle file 38

CHAPTER 6

Coupling Constraint Derivations

This section will show in detail how coupling coefficients for two macromolecules (mRNA and ribosome) are derived.
The remaining macromolecule coupling derivations follow a similar approach and logic, therefore they are omitted
here. For remaining derivations, reference O’Brien et al, 2013.

6.1 Parameters

The parameters for the mRNA coupling coefficient derivations are listed below:

P = total cellular protein mass fraction (
gaa

gDWcell
)

𝑅 = 𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑅𝑁𝐴 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (
𝑔𝑛𝑡

𝑔𝐷𝑊𝑐𝑒𝑙𝑙
)

𝜇 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (
1

ℎ𝑟
)

𝑓𝑟𝑅𝑁𝐴 = 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑁𝐴 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑟𝑅𝑁𝐴(
𝑔𝑛𝑡

𝑔𝑛𝑡𝑡𝑜𝑡𝑎𝑙

)

𝑓𝑡𝑅𝑁𝐴 = 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑁𝐴 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑡𝑅𝑁𝐴(
𝑔𝑛𝑡

𝑔𝑛𝑡𝑡𝑜𝑡𝑎𝑙

)

𝑓𝑚𝑅𝑁𝐴 = 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑁𝐴 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑚𝑅𝑁𝐴(
𝑔𝑛𝑡

𝑔𝑛𝑡𝑡𝑜𝑡𝑎𝑙

)

𝑚𝑎𝑎 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑(
𝑔𝑎𝑎

𝑚𝑜𝑙𝑎𝑎
)

𝑚𝑛𝑡 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑅𝑁𝐴 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒(
𝑔𝑛𝑡

𝑚𝑜𝑙𝑛𝑡
)

𝑚𝑡𝑅𝑁𝐴 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑅𝑁𝐴(
𝑔𝑡𝑅𝑁𝐴

𝑚𝑜𝑙𝑡𝑅𝑁𝐴
)

𝑚𝑟𝑟 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑟𝑅𝑁𝐴 𝑝𝑒𝑟 𝑟𝑖𝑏𝑜𝑠𝑜𝑚𝑒(
𝑔𝑛𝑡

𝑚𝑜𝑙𝑟𝑖𝑏𝑜𝑠𝑜𝑚𝑒
)

𝑘𝑚𝑅𝑁𝐴
𝑑𝑒𝑔 = 𝑓𝑖𝑟𝑠𝑡− 𝑜𝑟𝑑𝑒𝑟 𝑚𝑅𝑁𝐴 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(

1

ℎ𝑟
)

39

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817402/

COBRAme Documentation, Release 0.0.8

Along with an experical relationship between measured ratio of RNA (R) to Protein (P)

R

P
=

𝜇

𝜅𝜏
+ r0 =

𝜇+ 𝜅𝜏 · r0
𝜅𝜏

For E. coli grown at 37𝑜𝐶, (Scott et al., 2010) emperically found 𝑟0 = 0.087 and 𝜅𝜏 = 4.5 1
ℎ𝑟 .

6.2 Derivation of mRNA coupling coefficients

To derive the mRNA dilution and degradation coupling coefficients, we assume that these processes are coupled
together as follows.

vdilutionntmRNA
= 𝛼1 · vdegradationntmRNA

vdegradationntmRNA
= 𝛼2 · vtranslationaaprotein

where 𝛼1 and 𝛼2 represent the coupling of degradation to dilution and translation to degredation, respec-
tively. For the remainder of the mRNA coupling derivation we will abbreviate these reaction rates as
vdilution, vdegradationand vtranslation for simplicity.

To find these coupling values, we will need to find vdilution, vdegradationand vtranslation. The dilution of mRNA
nucleotides as it is passed on to daughter cells is related to the concentration of mRNA nucleotides and the growth rate
as follows:

vdilution = 𝜇 · [ntmRNA]

similarly the degradation rate can be found using the first order rate constant of mRNA degradation

vdegradation = kmRNA
deg · [ntmRNA]

the rate of translation / protein synthesis rate in (𝑚𝑜𝑙𝑎𝑎

ℎ𝑟) can be found using the following. This represents the rate
which amino acid are incorporated into protein:

vtranslation =
𝜇 · P
maa

The concentration of mRNA nucleotides in units of (𝑚𝑜𝑙𝑛𝑡

𝑔𝐷𝑊𝑐𝑒𝑙𝑙
) can be defined as:

[ntmRNA] =
R · fmRNA

mnt

6.2.1 Solving for mRNA coupling coefficients

Solving for each of these coupling terms gives:

𝛼1 =
vdilution

vdegradation
=

𝜇 · [ntmRNA]

kmRNA
deg · [ntmRNA]

=
𝜇

kmRNA
deg

𝛼2 =
vdegradation
vtranslation

=
kmRNA
deg · [ntmRNA]

𝜇·P
maa

6.2. Derivation of mRNA coupling coefficients 40

COBRAme Documentation, Release 0.0.8

substituting for [mRNA] gives:

𝛼2 =
kmRNA
deg · R·fmRNA

mnt

𝜇·P
maa

=
kmRNA
deg · R · fmRNA ·maa

mnt · 𝜇 · P

𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔 :

𝛼2 =
kmRNA
deg

𝜇
· R
P

· fmRNA ·maa

mnt

substitution for 𝑅
𝑃 gives:

𝛼2 =
𝑘𝑚𝑅𝑁𝐴
𝑑𝑒𝑔

𝜇
· 𝜇+ 𝜅𝜏 · 𝑟0

𝜅𝜏
· 𝑓𝑚𝑅𝑁𝐴 ·𝑚𝑎𝑎

𝑚𝑛𝑡

Simplifying the above relationship, the coupling of dilution to translation is represented by:

vdilution = 𝛼1 · 𝛼2 · vtranslation
𝑤ℎ𝑒𝑟𝑒 :

𝛼1 · 𝛼2 =
𝜇+ 𝜅𝜏 · r0

𝜅𝜏
· fmRNA ·maa

mnt

Therefore 𝜇
kmRNA

= 𝛼1 · 𝛼2 and:

kmRNA =
𝜇

𝛼1 · 𝛼2
=

𝜇 · 𝜅𝜏

𝜇+ 𝜅𝜏 · r0
· mnt

fmRNA ·maa

6.2.2 Units of mRNA coupling

Based on the [ntmRNA] expression above, the units will be:

[ntmRNA] =
R · fmRNA

mnt

units−−−→
(
gnttotal
gDWcell

) · (gnt
gnttotal

)

(gnt
molnt

)
= (

molnt
gDWcell

)

therefore vdegradation will be :

vdegradation = kmRNA
deg · [ntmRNA]

units−−−→ (
1

hr
) · (molnt

gDWcell
) = (

molnt
gDWcell · hr

)

and for vtranslation:

vtranslation =
𝜇 · P
maa

units−−−→
(1
hr) · (

gaa
gDWcell

)

(gaa
molaa

)
= (

molaa
gDWcell · hr

)

and for vdilution:

vdilution = 𝜇 · [ntmRNA]
units−−−→ (

1

hr
) · (molnt

gDWcell
) = (

molnt
gDWcell · hr

)

6.2.3 Applying mRNA coupling to translation

Note that the units for each reaction detailed in the above derivations describe the overall coupling of translation,
dilution, and degradation cell-wide. For individual proteins and ME-model translation reactions, we will have:

vdilutioni = 𝛼1 · 𝛼2 ·
lenpeptidei
lenmRNAi

· vtranslationi

6.2. Derivation of mRNA coupling coefficients 41

COBRAme Documentation, Release 0.0.8

the length terms are required due to the fact that vdilutioni
and vtranslationi

will have units of molmRNAi

gDW·hr and
molproteini
gDW·hr ,

respectively.

Since:

𝛼1 · 𝛼2 =
vdilution

vtranslation

units−−−→ molnt
molaa

therefore:

𝛼1 · 𝛼2 ·
lenpeptidei
lenmRNAi

units−−−→ (
molnt
molaa

) · (
molaa

molpeptidei

molnt
molmRNAi

) =
molmRNAi

molproteini

however the length of a peptide will always be 1/3 the length of the mRNA that encodes it (3 nucleotides in a codon)
therefore we can replace (lenpeptidei

lenmRNAi
) with (13

molaa·molmRNAi

molproteini ·molnt
)

therefore the final coupling of dilution to translation will be:

vdilutioni = 𝛼1 · 𝛼2 ·
1

3
· vtranslationi

and similarly for degradation coupling:

vdegradationi
= 𝛼2 ·

1

3
· vtranslationi

6.2.4 Plugging ribosome coupling into a ME-model reaction

The coupling of mRNA synthesis to translation will require considering the sum of the mRNA dilution and degration.
When imposed in the ME-model, a translation reaction will look similar to following:

x · charged_tRNAs + (
1

3
· 𝛼1 · 𝛼2 +

1

3
· 𝛼2) ·mRNAi + y · ribosome

vtranslationi−−−−−−−−→ proteini +
1

3
· 𝛼2 · nucleotides

with the coupling coefficients substituted:

x · charged_tRNAs + (
1

3
· 𝜇+ 𝜅𝜏 · r0

𝜅𝜏
· fmRNA ·maa

mnt
+

1

3
·
𝑘𝑚𝑅𝑁𝐴
𝑑𝑒𝑔

𝜇
· 𝜇+ 𝜅𝜏 · 𝑟0

𝜅𝜏
· 𝑓𝑚𝑅𝑁𝐴 ·𝑚𝑎𝑎

𝑚𝑛𝑡
) ·𝑚𝑅𝑁𝐴𝑖 + 𝑦 · 𝑟𝑖𝑏𝑜𝑠𝑜𝑚𝑒

𝑣𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑖−−−−−−−−→ 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖 + (
1

3
·
𝑘𝑚𝑅𝑁𝐴
𝑑𝑒𝑔

𝜇
· 𝜇+ 𝜅𝜏 · 𝑟0

𝜅𝜏
· 𝑓𝑚𝑅𝑁𝐴 ·𝑚𝑎𝑎

𝑚𝑛𝑡
) · 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠

where x and y represents the coupling coefficient for the tRNAs and ribosome (the ribosome coupling is derived
below). The reaction will produce nucleotides with a coefficient of 1

3 · 𝛼2 since these are the product of mRNA
degradation.

Note: There is a minor typo in the O’brien et al., 2013 coupling coefficient derivations where the 𝛼1 and 𝛼2 expresions
are multiplied by 3 instead of 1

3 .

6.2. Derivation of mRNA coupling coefficients 42

COBRAme Documentation, Release 0.0.8

6.3 Derivation of ribosome coupling coefficients

Like above, we will derive the coupling between translation and ribosome dilution to daughter cells during cell divi-
sion. Unlike mRNA, ribosomes and rRNA are stable and we assume they are degraded at a neglible rate

vdilutionribosome
= 𝛼3 · vtranslationaaprotein

As for the mRNA coupling derivation above, 𝛼3 represent the coupling of translation to ribosome dilution. For the
remainder of the ribosome coupling derivation, we will abbreviate these reaction rates as vdilutionand vtranslation for
simplicity.

The translation of protein is defined as above in the mRNA coupling derivations:

vtranslation =
𝜇 · P
maa

and:

vdilution = 𝜇 · [ribosome]

The concentration of ribosome in units of (molribosome

gDWcell
) :

[ribosome] =
R · frRNA

mrr

plugging in this expression for [ribosome] and solving for 𝛼3 gives :

𝛼3 =
R·frRNA

mrr
· 𝜇

𝜇·P
maa

=
R

P
· frRNA ·maa

mrr

plugging in the above empirical expression for 𝑅
𝑃 :

𝛼3 =
𝜇+ 𝜅𝜏 · r0

𝜅𝜏
· frRNA ·maa

mrr

6.3.1 Units of ribosome coupling

vdilution = 𝜇 · [ribosome]
units−−−→ (

1

hr
) ·

(
gnttotal
gDW) · (gntribosome

gnttotal
)

(
gntribosome

molribosome
)

= (
molribosome

gDWcell · hr
)

𝑣𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 =
𝜇 · 𝑃
𝑚𝑎𝑎

𝑢𝑛𝑖𝑡𝑠−−−→=
(1
ℎ𝑟) · (

𝑔𝑎𝑎

𝑔𝐷𝑊𝑐𝑒𝑙𝑙
)

(𝑔𝑎𝑎

𝑚𝑜𝑙𝑎𝑎
)

= (
𝑚𝑜𝑙𝑎𝑎

𝑔𝐷𝑊𝑐𝑒𝑙𝑙 · ℎ𝑟
)

6.3.2 Applying ribosome coupling to translation

Note that the units for each reaction detailed in the above derivations describe the overall coupling of translation to
ribosome dilution on a cell-wide level. For individual proteins, we will have:

vdilutioni = 𝛼3 · lenpeptidei · vtranslationi

The length term is required due to the fact that in the ME-model vdilutioni
and vtranslationi

will have units of
molribosome

gDWcell·hr and
molproteini

gDWcell·hr , respectively.

6.3. Derivation of ribosome coupling coefficients 43

COBRAme Documentation, Release 0.0.8

Since:

𝛼3 =
vdilution

vtranslation

units−−−→ molribosome

molaa

therefore:

(𝛼3) · (lenpeptidei)
units−−−→ (

molribosome

molaa
) · (molaa

molpeptidei
) =

molribosome

molproteini

therefore plugging this into the final coupling of dilution to translation will be:

vdilutioni
= 𝛼3 · lenproteini

· vtranslationi

confirming units:

vdilutioni
= 𝛼3 · lenproteini

· vtranslationi

units−−−→ (
molribosome

molproteini

) · (molproteini

gDWcell
) =

molribosome

gDWcell

6.3.3 Applying ribosome coupling to translation

When further imposing ribosome dilution coupling in the ME-model, a translation reaction will look similar to fol-
lowing:

x · charged_tRNAs + (
1

3
· 𝛼1 · 𝛼2 +

1

3
· 𝛼2) ·mRNAi + lenproteini

· 𝛼3 · ribosome
vtranslationi−−−−−−−−→ proteini +

1

3
· 𝛼2 · nucleotides

with the coupling coefficients substituted:

x · charged_tRNAs + (
1

3
· 𝜇+ 𝜅𝜏 · r0

𝜅𝜏
· fmRNA ·maa

mnt
+

1

3
·
𝑘𝑚𝑅𝑁𝐴
𝑑𝑒𝑔

𝜇
· 𝜇+ 𝜅𝜏 · 𝑟0

𝜅𝜏
· 𝑓𝑚𝑅𝑁𝐴 ·𝑚𝑎𝑎

𝑚𝑛𝑡
) ·𝑚𝑅𝑁𝐴𝑖 + (𝑙𝑒𝑛𝑝𝑟𝑜𝑡𝑒𝑖𝑛 · 𝜇+ 𝜅𝜏 · 𝑟0

𝜅𝜏
· 𝑓𝑟𝑅𝑁𝐴 ·𝑚𝑎𝑎

𝑚𝑟𝑟
) · 𝑟𝑖𝑏𝑜𝑠𝑜𝑚𝑒

𝑣𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑖−−−−−−−−→

𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖 + (
1

3
·
𝑘𝑚𝑅𝑁𝐴
𝑑𝑒𝑔

𝜇
· 𝜇+ 𝜅𝜏 · 𝑟0

𝜅𝜏
· 𝑓𝑚𝑅𝑁𝐴 ·𝑚𝑎𝑎

𝑚𝑛𝑡
) · 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠

where x represents the coupling coefficient for the tRNAs.

6.3. Derivation of ribosome coupling coefficients 44

CHAPTER 7

cobrame package

7.1 Subpackages

7.1.1 cobrame.core package

Submodules

cobrame.core.reaction module

class cobrame.core.reaction.ComplexFormation(id)
Bases: cobrame.core.reaction.MEReaction

Formation of a functioning enzyme complex that can act as a catalyst for a ME-model reaction.

This reaction class produces a reaction that combines the protein subunits and adds any coenyzmes, prosthetic
groups or enzyme modifications to form complete enzyme complex.

Parameters id (str) – Identifier of the complex formation reaction. As a best practice, this ID
should be prefixed with ‘formation + _ + <complex_id>’. If there are multiple ways of producing
complex, this can be suffixed with ‘_ + alt’

_complex_id
str – Name of the complex being produced by the complex formation reaction

complex_data_id
str – Name of ComplexData that defines the subunit stoichiometry or subreactions (modfications). This
will not always be the same as the _complex_id. Sometimes complexes can be modified using different
processes/enzymes

complex
Get the metabolite product of the complex formation reaction

Returns Instance of complex metabolite from self._complex_id

Return type cobrame.core.component.Complex

45

https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

update(verbose=True)
Creates reaction using the associated complex data and adds chemical formula to complex metabolite
product.

This function adds the following components to the reaction stoichiometry (using ‘data’ as shorthand for
cobrame.core.processdata.ComplexData):

1. Complex product defined in self._complex_id

2. Protein subunits with stoichiometery defined in data.stoichiometry

3. Metabolites and enzymes w/ coupling coefficients defined in data.subreactions. This often includes
enzyme complex modifications by coenzymes or prosthetic groups.

4. Biomass cobrame.core.component.Constraint corresponding to modifications detailed in
data.subreactions, if any

Parameters verbose (bool) – Prints when new metabolites are added to the model when
executing update()

class cobrame.core.reaction.GenericFormationReaction(id)
Bases: cobrame.core.reaction.MEReaction

Some components in an ME-model can perform exactly the same function. To handle this, GenericFormation-
Reactions are used to create generic forms of these components.

Parameters id (str) – Identifier of the generic formation reaction. As a best practice, this ID
should be prefixed with ‘metabolite_id + _to_ + generic_metabolite_id’

class cobrame.core.reaction.MEReaction(id=None, name=’‘)
Bases: cobra.core.Reaction.Reaction

MEReaction is a general reaction class from which all ME-Model reactions will inherit

This class contains functionality that can be used by all ME-model reactions

Parameters id (str) – Identifier of the MEReaction. Should follow best practices of child class

add_biomass_from_subreactions(process_data, biomass=0.0)
Account for the biomass of metabolites added to macromolecule (protein, complex, etc.) due to a modifi-
cation such as prosthetic group addition.

Parameters

• process_data (cobrame.core.processdata.ProcessData) – ProcessData
that is used to construct MEReaction

• biomass (float) – Initial biomass value in kDa

Returns Initial biomass value + biomass added from subreactions in kDa

Return type float

add_subreactions(process_data_id, stoichiometry, scale=1.0)
Function to add subreaction process data to reaction stoichiometry

Parameters

• process_data_id (str) – ID of the process data associated with the metabolic reac-
tion.

For example, if the modifications are being added to a complex formation reaction, the
process data id would be the name of the complex.

7.1. Subpackages 46

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

• stoichiometry (dict) – Dictionary of {metabolite_id: float} or {metabolite_id: float
* (sympy.Symbol)}

• scale (float) – Some processes (ie. tRNA charging) are reformulated such that other
involved metabolites need scaling

Returns Stoichiometry dictionary with updated entries

Return type dict

check_me_mass_balance()
Checks the mass balance of ME reaction, ignoring charge balances

Returns {element: number_of_elemental_imbalances}

Return type dict

clear_metabolites()
Remove all metabolites from the reaction

get_components_from_ids(id_stoichiometry, default_type=<class ‘co-
brame.core.component.Metabolite’>, verbose=True)

Function to convert stoichiometry dictionary entries from strings to cobra objects.

{metabolite_id: value} to {cobrame.core.component.Metabolite: value}

Parameters

• id_stoichiometry (Dict {string: float}) – Input Dict of {metabolite_id:
value}

• default_type (String) – The type of cobra.Metabolite to default to if the metabolite
is not yet present in the model

• verbose (Boolean) – If True, print metabolites added to model if not yet present in
model

Returns {cobrame.core.component.Metabolite: float}

Return type dict

objective_coefficient
Get and set objective coefficient of reaction

Overrides method in parent class in order to enable use of optlang interfaces.

Returns Objective coefficient of reaction

Return type float

class cobrame.core.reaction.MetabolicReaction(id)
Bases: cobrame.core.reaction.MEReaction

Irreversible metabolic reaction including required enzymatic complex

This reaction class’s update function processes the information contained in the complex data for the enzyme
that catalyzes this reaction as well as the stoichiometric data which contains the stoichiometry of the metabolic
conversion being performed (i.e. the stoichiometry of the M-model reaction analog)

Parameters id (str) – Identifier of the metabolic reaction. As a best practice, this ID should use
the following template (FWD=forward, REV=reverse): “<StoichiometricData.id> + _ + <FWD
or REV> + _ + <Complex.id>”

keff
float – The turnover rete (keff) couples enzymatic dilution to metabolic flux

7.1. Subpackages 47

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

reverse
boolean – If True, the reaction corresponds to the reverse direction of the reaction. This is necessary since
all reversible enzymatic reactions in an ME-model are broken into two irreversible reactions

complex_data
Get or set the ComplexData instance that details the enzyme that catalyzes the metabolic reaction. Can be
set with instance of ComplexData or with its id.

Returns Complex data detailing enzyme that catalyzes this reaction

Return type cobrame.core.processdata.ComplexData

stoichiometric_data
Get or set the StoichiometricData instance that details the metabolic conversion of the metabolic reaction.
Can be set with instance of StoichiometricData or with its id.

Returns Stoichiometric data detailing enzyme that catalyzes this reaction

Return type :class:‘cobrame.core.processdata.StoichiometricData ‘

update(verbose=True)
Creates reaction using the associated stoichiometric data and complex data.

This function adds the following components to the reaction stoichiometry (using ‘data’ as shorthand for
cobrame.core.processdata.StoichiometricData):

1. Complex w/ coupling coefficients defined in self.complex_data.id and self.keff

2. Metabolite stoichiometry defined in data.stoichiometry. Sign is flipped if self.reverse == True

Also sets the lower and upper bounds based on self.reverse and data.upper_bound and data.lower_bound.

Parameters verbose (bool) – Prints when new metabolites are added to the model when
executing update()

class cobrame.core.reaction.PostTranslationReaction(id)
Bases: cobrame.core.reaction.MEReaction

Reaction class that includes all posttranslational modification reactions (translocation, protein folding, modifi-
cation (for lipoproteins) etc)

There are often multiple different reactions/enzymes that can accomplish the same modification/function. In
order to account for these and maintain one translation reaction per protein, these processes need to be modeled
as separate reactions.

Parameters id (str) – Identifier of the post translation reaction

add_translocation_pathways(process_data_id, protein_id, stoichiometry=None)
Add complexes and metabolites required to translocate the protein into cell membranes.

Parameters

• process_data_id (str) – ID of translocation data defining post translation reaction

• protein_id (str) – ID of protein being translocated via post translation reaction

• stoichiometry (dict) – Dictionary of {metabolite_id: float} or {metabolite_id: float
* (sympy.Symbol)}

Returns Stoichiometry dictionary with updated entries from translocation

Return type dict

7.1. Subpackages 48

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

posttranslation_data
Get or set PostTranslationData that defines the type of post translation modification/process (fold-
ing/translocation) that the reaction accounts for. Can be set with instance of PostTranslationData or with
its id.

Returns The PostTranslationData that defines the PostTranslationReaction

Return type cobrame.core.processdata.PostTranslationData

update(verbose=True)
Creates reaction using the associated posttranslation data and adds chemical formula to processed protein
product

This function adds the following components to the reaction stoichiometry (using ‘data’ as shorthand for
cobrame.core.processdata.PostTranslationData):

1. Processed protein product defined in data.processed_protein_id

2. Unprocessed protein reactant defined in data.unprocessed_protein_id

3. Metabolites and enzymes defined in data.subreactions

4. Translocation pathways defined in data.translocation

5. Folding mechanism defined in data.folding_mechanims w/ coupling coefficients defined in
data.keq_folding, data.k_folding, model.global_info[’temperature’], data.aggregation_propensity,
and data.propensity_scaling

6. Surface area constraints defined in data.surface_are

7. Biomass if a significant chemical modification takes place (i.e. lipid modifications for lipoproteins)

Parameters verbose (bool) – Prints when new metabolites are added to the model when
executing update()

class cobrame.core.reaction.SummaryVariable(id=None)
Bases: cobrame.core.reaction.MEReaction

SummaryVariables are reactions that impose global constraints on the model.

The primary example of this is the biomass_dilution SummaryVariable which forces the rate of biomass pro-
duction of macromolecules, etc. to be equal to the rate of their dilution to daughter cells during growth.

Parameters id (str) – Identifier of the SummaryVariable

class cobrame.core.reaction.TranscriptionReaction(id)
Bases: cobrame.core.reaction.MEReaction

Transcription of a TU to produced TranscribedGene.

RNA is transcribed on a transcription unit (TU) level. This type of reaction produces all of the RNAs contained
within a TU, as well as accounts for the splicing/excision of RNA between tRNAs and rRNAs. The appropriate
RNA_biomass constrain is produced based on the molecular weight of the RNAs being transcribed

Parameters id (str) – Identifier of the transcription reaction. As a best practice, this ID should be
prefixed with ‘transcription + _’

transcription_data
Get or set the cobrame.core.processdata.TranscriptionData that defines the transcription
unit architecture and the features of the RNAs being transcribed.

update(verbose=True)
Creates reaction using the associated transcription data and adds chemical formula to RNA products

7.1. Subpackages 49

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

This function adds the following components to the reaction stoichiometry (using ‘data’ as shorthand for
cobrame.core.processdata.TranscriptionData):

1. RNA_polymerase from data.RNA_polymerase w/ coupling coefficient (if present)

2. RNA products defined in data.RNA_products

3. Nucleotide reactants defined in data.nucleotide_counts

4. If tRNA or rRNA contained in data.RNA_types, excised base products

5. Metabolites + enzymes w/ coupling coefficients defined in data.subreactions (if present)

6. Biomass cobrame.core.component.Constraint corresponding to data.RNA_products and
their associated masses

7. Demand reactions for each transcript product of this reaction

Parameters verbose (bool) – Prints when new metabolites are added to the model when
executing update()

class cobrame.core.reaction.TranslationReaction(id)
Bases: cobrame.core.reaction.MEReaction

Reaction class for the translation of a TranscribedGene to a TranslatedGene

Parameters id (str) – Identifier of the translation reaction. As a best practice, this ID should be
prefixed with ‘translation + _’

translation_data
Get and set the cobra.core.processdata.TranslationData that defines the translation of the
gene. Can be set with instance of TranslationData or with its id.

Returns

Return type cobra.core.processdata.TranslationData

update(verbose=True)
Creates reaction using the associated translation data and adds chemical formula to protein product

This function adds the following components to the reaction stoichiometry (using ‘data’ as shorthand for
cobrame.core.processdata.TranslationData):

1. Amino acids defined in data.amino_acid_sequence. Subtracting water to account for condensation
reactions during polymerization

2. Ribosome w/ translation coupling coefficient (if present)

3. mRNA defined in data.mRNA w/ translation coupling coefficient

4. mRNA + nucleotides + hydrolysis ATP cost w/ degradation coupling coefficient (if kdeg (defined in
model.global_info) > 0)

5. RNA_degradosome w/ degradation coupling coefficient (if present and kdeg > 0)

6. Protein product defined in data.protein

7. Subreactions defined in data.subreactions

8. protein_biomass cobrame.core.component.Constraint corresponding to the protein prod-
uct’s mass

9. Subtract mRNA_biomass cobrame.core.component.Constraint defined by mRNA degra-
dation coupling coefficinet (if kdeg > 0)

7.1. Subpackages 50

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

Parameters verbose (bool) – Prints when new metabolites are added to the model when
executing update()

class cobrame.core.reaction.tRNAChargingReaction(id)
Bases: cobrame.core.reaction.MEReaction

Reaction class for the charging of a tRNA with an amino acid

Parameters id (str) – Identifier for the charging reaction. As a best practice, ID should follow the
template “charging_tRNA + _ + <tRNA_locus> + _ + <codon>”. If tRNA initiates translation,
<codon> should be replaced with START.

tRNA_data
Get and set the cobra.core.processdata.tRNAData that defines the translation of the gene. Can
be set with instance of tRNAData or with its id.

Returns

Return type cobra.core.processdata.tRNAData

update(verbose=True)
Creates reaction using the associated tRNA data

This function adds the following components to the reaction stoichiometry (using ‘data’ as shorthand for
cobrame.core.processdata.tRNAData):

1. Charged tRNA product following template: “generic_tRNA + _ + <data.codon> + _ +
<data.amino_acid>”

2. tRNA metabolite (defined in data.RNA) w/ charging coupling coefficient

3. Charged amino acid (defined in data.amino_acid) w/ charging coupling coefficient

5. Synthetase (defined in data.synthetase) w/ synthetase coupling coefficient found, in part, using
data.synthetase_keff

6. Post transcriptional modifications defined in data.subreactions

Parameters verbose (bool) – Prints when new metabolites are added to the model when
executing update()

cobrame.core.processdata module

class cobrame.core.processdata.ComplexData(id, model)
Bases: cobrame.core.processdata.ProcessData

Contains all information associated with the formation of an functional enzyme complex.

This can include any enzyme complex modifications required for the enzyme to become active.

Parameters

• id (str) – Identifier of the complex data. As a best practice, this should typically use the
same ID as the complex being formed. In cases with multiple ways to form complex ‘_ +
alt’ or similar suffixes can be used.

• model (cobrame.core.model.MEModel) – ME-model that the ComplexData is as-
sociated with

stoichiometry
collections.DefaultDict(int) – Dictionary containing {protein_id: count} for all protein sub-
units comprising enzyme complex

7.1. Subpackages 51

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

subreactions
dict – Dictionary of {subreaction_data_id: count} for all complex formation subreactions/modifications.
This can include cofactor/prosthetic group binding or enzyme side group addition.

complex
Get complex metabolite object

Returns Instance of complex metabolite that ComplexData is used to synthesize

Return type cobrame.core.component.Complex

complex_id
Get and set complex ID for product of complex formation reaction

There are cases where multiple equivalent processes can result in the same final complex. This allows the
equivalent final complex complex_id to be queried. This only needs set in the above case

Returns ID of complex that ComplexData is used to synthesize

Return type str

create_complex_formation(verbose=True)
creates a complex formation reaction

This assumes none exists already. Will create a reaction (prefixed by “formation”) which forms the com-
plex

Parameters verbose (bool) – If True, print if a metabolite is added to model during update

formation
Get the formation reaction object

Returns Complex formation reaction detailed in ComplexData

Return type cobrame.core.reaction.ComplexFormation

class cobrame.core.processdata.GenericData(id, model, component_list)
Bases: cobrame.core.processdata.ProcessData

Class for storing information about generic metabolites

Parameters

• id (str) – Identifier of the generic metabolite. As a best practice, this ID should be prefixed
with ‘generic + _’

• model (cobrame.core.model.MEModel) – ME-model that the GenericData is asso-
ciated with

• component_list (list) – List of metabolite ids for all metabolites that can provide
identical functionality

create_reactions()
Adds reaction with id “<metabolite_id> + _ + to + _ + <generic_id>” for each metabolite in
self.component_list.

Creates generic metabolite and generic reaction, if they do not already exist.

class cobrame.core.processdata.PostTranslationData(id, model, processed_protein, prepro-
cessed_protein)

Bases: cobrame.core.processdata.ProcessData

Parameters

• id (str) – Identifier for post translation process.

7.1. Subpackages 52

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

• model (cobrame.core.model.MEModel) – ME-model that the PostTranslationData
is associated with

• processed_protein (str) – ID of protein following post translational process

• preprocessed_protein (str) – ID of protein before post translational process

translocation
set – Translocation pathways involved in post translation reaction.

Set of {cobrame.core.processdata.TranslocationData.id}

translocation_multipliers
dict – Some proteins require different coupling of translocation enzymes.

Dictionary of {cobrame.core.processdata.TranslocationData.id: float}

surface_area
dict – If protein is translated into the inner or outer membrane, the surface area the protein occupies can
be accounted for as well.

Dictionary of {SA_+<inner_membrane or outer_membrane>: float}

subreactions
collections.DefaultDict(float) – If a protein is modified following translation, this is ac-
counted for here

Dictionary of {subreaction_id: float}

biomass_type
str – If the subreactions add biomass to the translated gene, the biomass type (cobrame.core.
compontent.Constraint.id) of the modification must be defined.

folding_mechanism
str – ID of folding mechanism for post translation reaction

aggregation_propensity
float – Aggregation propensity for the protein

keq_folding
dict – Temperature dependant keq for folding protein

Dictionary of {str(temperature): value}

k_folding
dict – Temperature dependant rate constant (k) for folding protein

Dictionary of {str(temperature): value}

propensity_scaling
float – Some small peptides are more likely to be folded by certain chaperones. This is accounted for using
propensity_scaling.

class cobrame.core.processdata.ProcessData(id, model)
Bases: object

Generic class for storing information about a process

This class essentially acts as a database that contains all of the relevant information needed to construct a
particular reaction. For example, to construct a transcription reaction, following information must be accessed
in some way:

• nucleotide sequence of the transcription unit

• RNA_polymerase (w/ sigma factor)

7.1. Subpackages 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

COBRAme Documentation, Release 0.0.8

• RNAs transcribed from transcription unit

• other processes involved in transcription of RNAs (splicing, etc.)

ME-model reactions are built from information in these objects.

Parameters

• id (str) – Identifier of the ProcessData instance.

• model (cobrame.core.model.MEModel) – ME-model that the ProcessData is asso-
ciated with

model
Get the ME-model the process data is associated with

Returns ME-model that uses this process data

Return type class:‘cobrame.core.model.MEModel

parent_reactions
Get reactions that the ProcessData instance is used to construct.

Returns Parent reactions of ProcessData

Return type set

update_parent_reactions()
Executes the update() function for all reactions that the ProcessData instance is used to construct.

class cobrame.core.processdata.StoichiometricData(id, model)
Bases: cobrame.core.processdata.ProcessData

Encodes the stoichiometry for a metabolic reaction.

StoichiometricData defines the metabolite stoichiometry and upper/lower bounds of metabolic reaction

Parameters

• id (str) – Identifier of the metabolic reaction. Should be identical to the M-model reac-
tions in most cases.

• model (cobrame.core.model.MEModel) – ME-model that the StoichiometricData
is associated with

_stoichiometry
dict – Dictionary of {metabolite_id: stoichiometry} for reaction

subreactions
collections.DefaultDict(int) – Cases where multiple enzymes (often carriers ie. Acyl Carrier
Protein) are involved in a metabolic reactions.

upper_bound
int – Upper reaction bound of metabolic reaction. Should be identical to the M-model reactions in most
cases.

lower_bound
int – Lower reaction bound of metabolic reaction. Should be identical to the M-model reactions in most
cases.

stoichiometry
Get or set metabolite stoichiometry for reaction.

Returns Dictionary of {metabolite_id: stoichiometry}

Return type dict

7.1. Subpackages 54

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

class cobrame.core.processdata.SubreactionData(id, model)
Bases: cobrame.core.processdata.ProcessData

Parameters

• id (str) – Identifier of the subreaction data. As a best practice, if the subreaction data
details a modification, the ID should be prefixed with “mod + _”

• model (cobrame.core.model.MEModel) – ME-model that the SubreactionData is
associated with

enzyme
list or str or None – List of cobrame.core.component.Complex.id s for enzymes that catalyze
this process

or

String of single cobrame.core.component.Complex.id for enzyme that catalyzes this process

keff
float – Effective turnover rate of enzyme(s) in subreaction process

_element_contribution
dict – If subreaction adds a chemical moiety to a macromolecules via a modification or other means, net
element contribution of the modification process should be accounted for. This can be used to mass balance
check each of the individual processes.

Dictionary of {element: net_number_of_contributions}

calculate_biomass_contribution()
Calculate net biomass increase/decrease as a result of the subreaction process.

If subreaction adds a chemical moiety to a macromolecules via a modification or other means, the biomass
contribution of the modification process should be accounted for and ultimately included in the reaction it
is involved in.

Returns Mass of moiety transferred to macromolecule by subreaction

Return type float

calculate_element_contribution()
Calculate net contribution of chemical elements based on the stoichiometry of the subreaction data

Returns Dictionary of {element: net_number_of_contributions}

Return type dict

element_contribution
Get net contribution of elements from subreaction process to macromolecule

If subreaction adds a chemical moiety to a macromolecules via a modification or other means, net element
contribution of the modification process should be accounted for. This can be used to mass balance check
each of the individual processes.

Returns Dictionary of {element: net_number_of_contributions}

Return type dict

get_all_usages()
Get all process data that the subreaction is involved in

Yields cobrame.core.processdata.ProcessData – ProcessData that subreaction is
involved in

7.1. Subpackages 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

COBRAme Documentation, Release 0.0.8

get_complex_data()
Get the complex data that the subreaction is involved in

Yields cobrame.core.processdata.ComplexData – ComplexData that subreaction is
involved in

class cobrame.core.processdata.TranscriptionData(id, model, rna_products=set([]))
Bases: cobrame.core.processdata.ProcessData

Class for storing information needed to define a transcription reaction

Parameters

• id (str) – Identifier of the transcription unit, typically beginning with ‘TU’

• model (cobrame.core.model.MEModel) – ME-model that the TranscriptionData is
associated with

nucleotide_sequence
str – String of base pair abbreviations for nucleotides contained in the transcription unit

RNA_products
set – IDs of cobrame.core.component.TranscribedGene that the transcription unit encodes.
Each member should be prefixed with “RNA + _”

RNA_polymerase
str – ID of the cobrame.core.component.RNAP that transcribes the transcription unit. Different
IDs are used for different sigma factors

subreactions
collections.DefaultDict(int) – Dictionary of {cobrame.core.processdata.
SubreactionData ID: num_usages} required for the transcription unit to be transcribed

RNA_types
Get generator consisting of the RNA type for each RNA product

Yields str – (mRNA, tRNA, rRNA, ncRNA)

codes_stable_rna
Get whether transcription unit codes for a stable RNA

Returns True if tRNA or rRNA in RNA products False if not

Return type bool

excised_bases
Get count of bases that are excised during transcription

If a stable RNA (e.g. tRNA or rRNA) is coded for in the transcription unit, the transcript must be spliced
in order for these to function.

This determines whether the transcription unit requires splicing and, if so, returns the count of nucleotides
within the transcription unit that are not accounted for in the RNA products, thus identifying the appropriate
introns nucleotides.

Returns

{nucleotide_monophosphate_id: number_excised}

i.e. {“amp_c”: 10, “gmp_c”: 11, “ump_c”: 9, “cmp_c”: 11}

Return type dict

nucleotide_count
Get count of each nucleotide contained in the nucleotide sequence

7.1. Subpackages 56

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

COBRAme Documentation, Release 0.0.8

Returns {nuclotide_id: number_of_occurances}

Return type dict

class cobrame.core.processdata.TranslationData(id, model, mrna, protein)
Bases: cobrame.core.processdata.ProcessData

Class for storing information about a translation reaction.

Parameters

• id (str) – Identifier of the gene being translated, typically the locus tag

• model (cobrame.core.model.MEModel) – ME-model that the TranslationData is
associated with

• mrna (str) – ID of the mRNA that is being translated

• protein (str) – ID of the protein product.

mRNA
str – ID of the mRNA that is being translated

protein
str – ID of the protein product.

subreactions
collections.DefaultDict(int) – Dictionary of {cobrame.core.processdata.
SubreactionData.id: num_usages} required for the mRNA to be translated

nucleotide_sequence
str – String of base pair abbreviations for nucleotides contained in the gene being translated

add_elongation_subreactions(elongation_subreactions=set([]))
Add all subreactions involved in translation elongation.

This includes:

• tRNA activity subreactions returned with subreactions_from_sequence() which is called
within this function.

• Elongation subreactions passed into this function. These will be added with a value of
len(amino_acid_sequence) - 1 as these are involved in each amino acid addition

Some additional enzymatic processes are required for each amino acid addition during translation elonga-
tion

Parameters elongation_subreactions (set) – Subreactions that are required for each
amino acid addition

add_initiation_subreactions(start_codons=set([]), start_subreactions=set([]))
Add all subreactions involved in translation initiation.

Parameters

• start_codons (set, optional) – Start codon sequences for the organism being
modeled

• start_subreactions (set, optional) – Subreactions required to initiate trans-
lation, including the activity by the start tRNA

add_termination_subreactions(translation_terminator_dict=None)
Add all subreactions involved in translation termination.

Parameters translation_terminator_dict (dict or None) – {stop_codon : en-
zyme_id_of_terminator_enzyme}

7.1. Subpackages 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/constants.html#None

COBRAme Documentation, Release 0.0.8

amino_acid_count
Get number of each amino acid in the translated protein

Returns {amino_acid_id: number_of_occurrences}

Return type dict

amino_acid_sequence
Get amino acid sequence from mRNA’s nucleotide sequence

Returns Amino acid sequence

Return type str

codon_count
Get the number of each codon contained within the gene sequence

Returns {codon_sequence: number_of_occurrences}

Return type dict

first_codon
Get the first codon contained in the mRNA sequence. This should correspond to the start codon for the
gene.

Returns First 3 nucleotides comprising the first codon in the mRNA gene sequence

Return type str

last_codon
Get the last codon contained in the mRNA sequence. This should correspond to the stop codon for the
gene.

Returns Last 3 nucleotides comprising the last codon in the mRNA gene sequence

Return type str

subreactions_from_sequence
Get subreactions associated with each tRNA/AA addition.

tRNA activity is accounted for as subreactions. This returns the subreaction counts associated with each
amino acid addition, based on the sequence of the mRNA.

Returns {cobrame.core.processdata.SubreactionData.id: num_usages}

Return type dict

class cobrame.core.processdata.TranslocationData(id, model)
Bases: cobrame.core.processdata.ProcessData

Class for storing information about a protein translocation pathway

Parameters

• id (str) – Identifier for translocation pathway.

• model (cobrame.core.model.MEModel) – ME-model that the TranslocationData is
associated with

keff
float – Effective turnover rate of the enzymes in the translocation pathway

enzyme_dict
dict – Dictionary containing enzyme specific information about the way it is coupled to protein transloca-
tion

{enzyme_id: {length_dependent: <True or False>, fixed_keff: <True or False>}}

7.1. Subpackages 58

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

length_dependent_energy
bool – True if the ATP cost of translocation is dependent on the length of the protein

stoichiometry
dict – Stoichiometry of translocation pathway, typically ATP/GTP hydrolysis

class cobrame.core.processdata.tRNAData(id, model, amino_acid, rna, codon)
Bases: cobrame.core.processdata.ProcessData

Class for storing information about a tRNA charging reaction.

Parameters

• id (str) – Identifier for tRNA charging process. As best practice, this should be fol-
low “tRNA + _ + <tRNA_locus> + _ + <codon>” template. If tRNA initiates translation,
<codon> should be replaced with START.

• model (cobrame.core.model.MEModel) – ME-model that the tRNAData is associ-
ated with

• amino_acid (str) – Amino acid that the tRNA transfers to an peptide

• rna (str) – ID of the uncharged tRNA metabolite. As a best practice, this ID should be
prefixed with ‘RNA + _’

subreactions
collections.DefaultDict(int) – Dictionary of {cobrame.core.processdata.
SubreactionData.id: num_usages} required for the tRNA to be charged

synthetase
str – ID of the tRNA synthetase required to charge the tRNA with an amino acid

synthetase_keff
float – Effective turnover rate of the tRNA synthetase

cobrame.core.component module

class cobrame.core.component.Complex(id)
Bases: cobrame.core.component.MEComponent

Metabolite class for protein complexes

Parameters id (str) – Identifier of the protein complex.

metabolic_reactions
Get metabolic reactions catalyzed by complex

Returns List of cobrame.core.reaction.MetabolicReaction s catalyzed by com-
plex.

Return type list

class cobrame.core.component.Constraint(id)
Bases: cobrame.core.component.MEComponent

Metabolite class for global constraints such as biomass

Parameters id (str) – Identifier of the constraint

class cobrame.core.component.GenericComponent(id)
Bases: cobrame.core.component.MEComponent

Metabolite class for generic components created from cobrame.core.reaction.
GenericFormationReaction

7.1. Subpackages 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

Parameters id (str) – Identifier of the generic tRNA. As a best practice should follow template:
‘generic + _ + <generic metabolite id>’

class cobrame.core.component.GenerictRNA(id)
Bases: cobrame.core.component.MEComponent

Metabolite class for generic tRNAs created from cobrame.core.reaction.
tRNAChargingReaction

Parameters id (str) – Identifier of the generic tRNA. As a best practice should follow template:
‘generic_tRNA + _ + <codon> + _ + <amino acid metabolite id>’

class cobrame.core.component.MEComponent(id)
Bases: cobra.core.Metabolite.Metabolite

COBRAme component representation. Inherits from cobra.core.metabolite.Metabolite

Parameters id (str) – Identifier of the component. Should follow best practices of child classes

remove_from_me_model(method=’subtractive’)
Remove metabolite from me model along with any relevant cobrame.core.processdata.
ProcessData

Parameters method (str) –

• destructive: remove metabolite from model and remove reactions it is involved in

• subtractive: remove only metabolite from model

class cobrame.core.component.Metabolite(id)
Bases: cobrame.core.component.MEComponent

COBRAme metabolite representation

Parameters id (str) – Identifier of the metabolite

class cobrame.core.component.ProcessedProtein(id, unprocessed_protein_id)
Bases: cobrame.core.component.MEComponent

Metabolite class for protein created from cobrame.core.reaction.PostTranslationReaction

Parameters

• id (str) – Identifier of the processed protein

• unprocessed_protein_id (str) – Identifier of protein before being processed by
PostTranslationReaction

unprocessed_protein
Get unprocessed protein reactant in PostTranslationReaction

Returns Unprocessed protein object

Return type cobrame.core.component.TranslatedGene

class cobrame.core.component.RNAP(id)
Bases: cobrame.core.component.Complex

Metabolite class for RNA polymerase complexes. Inherits from cobrame.core.component.Complex

Parameters id (str) – Identifier of the RNA Polymerase.

class cobrame.core.component.Ribosome(id)
Bases: cobrame.core.component.Complex

Metabolite class for Ribosome complexes. Inherits from cobrame.core.component.Complex

7.1. Subpackages 60

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

Parameters id (str) – Identifier of the Ribosome.

class cobrame.core.component.TranscribedGene(id, rna_type, nucleotide_sequence)
Bases: cobrame.core.component.MEComponent

Metabolite class for gene created from cobrame.core.reaction.TranscriptionReaction

Parameters

• id (str) – Identifier of the transcribed gene. As a best practice, this ID should be prefixed
with ‘RNA + _’

• RNA_type (str) – Type of RNA encoded by gene sequence (mRNA, rRNA, tRNA, or
ncRNA)

• nucleotide_sequence (str) – String of base pair abbreviations for nucleotides con-
tained in the gene

left_pos
int – Left position of gene on the sequence of the (+) strain

right_pos
int – Right position of gene on the sequence of the (+) strain

strand
str –

• (+) if the RNA product is on the leading strand

• (-) if the RNA product is on the comple(mentary strand

nucleotide_count
Get number of each nucleotide monophosphate

Returns {nucleotide_monophosphate_id: count}

Return type dict

class cobrame.core.component.TranslatedGene(id)
Bases: cobrame.core.component.MEComponent

Metabolite class for protein created from cobrame.core.reaction.TranslationReaction

Parameters id (str) – Identifier of the translated protein product. Should be prefixed with “protein
+ _”

amino_acid_sequence
Get amino acid sequence of protein

Returns Amino acid sequence of protein

Return type str

complexes
Get the complexes that the protein forms

Returns List of cobrame.core.component.Complex s that the protein is a subunit of

Return type list

metabolic_reactions
Get the mtabolic reactions that the protein helps catalyze

Returns List of cobrame.core.reactions.MetabolicReaction s that the protein
helps catalyze

Return type list

7.1. Subpackages 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

COBRAme Documentation, Release 0.0.8

translation_data
Get translation data that defines protein.

Assumes that TranslatedGene is “protein + _ + <translation data id>”

Returns Translation data used to form translation reaction of protein

Return type cobrame.core.processdata.TranslationData

cobrame.core.component.create_component(component_id, default_type=<class ‘co-
brame.core.component.MEComponent’>,
rnap_set=set([]))

creates a component and attempts to set the correct type

cobra.core.model module

class cobrame.core.model.MEModel(*args)
Bases: cobra.core.Model.Model

add_biomass_constraints_to_model(biomass_types)

complex_data

compute_solution_error(solution=None)

construct_attribute_vector(attr_name, growth_rate)
build a vector of a reaction attribute at a specific growth rate

Mainly used for upper and lower bounds

construct_s_matrix(growth_rate)
build the stoichiometric matrix at a specific growth rate

gam

generic_data

get_metabolic_flux(solution=None)
extract the flux state for metabolic reactions

get_transcription_flux(solution=None)
extract the transcription flux state

get_translation_flux(solution=None)
extract the translation flux state

ngam

posttranslation_data

prune(skip=None)
remove all unused metabolites and reactions

This should be run after the model is fully built. It will be difficult to add new content to the model once
this has been run.

skip: list List of complexes/proteins/mRNAs/TUs to remain unpruned from model.

remove_genes_from_model(gene_list)

set_sasa_keffs(median_keff)

stoichiometric_data

subreaction_data

7.1. Subpackages 62

COBRAme Documentation, Release 0.0.8

tRNA_data

transcription_data

translation_data

translocation_data

unmodeled_protein

unmodeled_protein_biomass

unmodeled_protein_fraction

update()
updates all component reactions

Module contents

7.1.2 cobrame.util package

Submodules

cobrame.util.building module

cobrame.util.building.add_complex_to_model(me_model, complex_id, com-
plex_stoichiometry, com-
plex_modifications=None)

Adds ComplexData to the model for a given complex.

Parameters

• me_model (cobrame.core.model.MEModel) –

• complex_id (str) – ID of the complex and thus the model ComplexData

• complex_stoichiometry (dict) – {complex_id: {protein_<locus_tag>: stoichiom-
etry}}

• complex_modifications (dict) – {subreaction_id: stoichiometry}

cobrame.util.building.add_dummy_reactions(me_model, dna_seq, update=True)
Add all reactions necessary to produce a dummy reaction catalyzed by “CPLX_dummy”.

Parameters

• me_model (cobrame.core.model.MEModel) – The MEModel object to which the
content will be added

• dna_seq (str) – DNA sequence of dummy gene. Should be representative of the aver-
age codon composition, amino acid composition, length of a gene in the organism being
modeled

• update (bool) – If True, run update functions on all transcription, translation, complex
formation, and metabolic reactions added when constructing dummy reactions.

cobrame.util.building.add_m_model_content(me_model, m_model, com-
plex_metabolite_ids=None)

Add metabolite and reaction attributes to me_model from m_model. Also creates StoichiometricData objects
for each reaction in m_model, and adds reactions directly to me_model if they are exchanges or demands.

Parameters

7.1. Subpackages 63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

COBRAme Documentation, Release 0.0.8

• me_model (cobrame.core.model.MEModel) – The MEModel object to which the
content will be added

• m_model (cobra.core.model.Model) – The m_model which will act as the source
of metabolic content for MEModel

• complex_metabolite_ids (list) – List of complexes which are ‘metabolites’ in the
m-model reaction matrix, but should be treated as complexes

cobrame.util.building.add_metabolic_reaction_to_model(me_model, stoichiomet-
ric_data_id, directionality,
complex_id=None, sponta-
neous=False, update=False,
keff=65)

Creates and add a MetabolicReaction to a MEModel.

Parameters

• me_model (cobrame.core.model.MEModel) – MEModel that the MetabolicReac-
tion will be added to

• stoichiometric_data_id (str) – ID of the StoichiometricData for the reaction be-
ing added

• directionality (str) –

– Forward: Add reaction that occurs in the forward direction

– Reverse: Add reaction that occurs in the reverse direction

• complex_id (str or None) – ID of the ComplexData for the enzyme that catalyze
the reaction being added.

• spontaneous (bool) –

– If True and complex_id=” add reaction as spontaneous reaction

– If False and complex_id=” add reaction as orphan (CPLX_dummy catalyzed)

cobrame.util.building.add_model_complexes(me_model, complex_stoichiometry_dict, com-
plex_modification_dict, verbose=True)

Construct ComplexData for complexes into MEModel from its subunit stoichiometry, and a dictionary of its
modification metabolites.

It is assumed that each modification adds one equivalent of the modification metabolite. Multiple

Intended to be used as a function for large-scale complex addition.

For adding individual ComplexData objects, use add_complex_to_model

Parameters

• me_model (cobrame.core.model.MEModel) –

• complex_stoichiometry_dict (dict) – {unmodified_complex_id: {pro-
tein_<locus_tag>: stoichiometry}}

• complex_modification_dict (dict) –

{modified_complex_id:{core_enzyme: unmodified_complex_id, ‘modifications:
{mod_metabolite: stoichiometry}}}

7.1. Subpackages 64

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

COBRAme Documentation, Release 0.0.8

cobrame.util.building.add_reactions_from_stoichiometric_data(me_model,
rxn_to_cplx_dict,
rxn_info_frame,
update=False,
keff=65)

Creates and adds MetabolicReaction for all StoichiometricData in model.

Intended for use when adding all reactions from stoichiometric data for the first time.

For adding an individual reaction use add_metabolic_reaction_to_model()

Parameters

• me_model (cobrame.core.model.MEModel) – MEModel that the MetabolicReac-
tion will be added to

• rxn_to_cplx_dict (dict) – {StoichiometricData.id: catalytic_enzyme_id}

• rxn_info_frame (pandas.Dataframe) – Contains the ids, names and reversibility
for each reaction in the metabolic reaction matrix as well as whether the reaction is sponta-
neous

cobrame.util.building.add_subreaction_data(me_model, modification_id, mod-
ification_stoichiometry, modifica-
tion_enzyme=None, verbose=True)

Creates a SubreactionData object for each modification defined by the function inputs.

It’s assumed every complex modification occurs spontaneously, unless a modification_enzyme argument is
passed.

If a modification uses an enzyme this can be updated after the SubreactionData object is already created

Parameters me_model (cobrame.core.model.MEModel) –

cobrame.util.building.add_transcription_reaction(me_model, tu_name, locus_ids, se-
quence, update=True)

Create TranscriptionReaction object and add it to ME-Model. This includes the necessary transcription data.

Parameters

• me_model (cobrame.core.model.MEModel) – The MEModel object to which the
reaction will be added

• tu_name (str) – ID of TU being transcribed. The TranscriptionReaction will be added
as “transcription_+TU_name” The TranscriptionData will be added as just “TU_name”

• locus_ids (set) – Set of locus IDs that the TU transcribes

• sequence (str) – Nucleotide sequence of the TU.

• update (bool) – If True, use TranscriptionReaction’s update function to update and add
reaction stoichiometry

Returns TranscriptionReaction for the TU

Return type cobrame.core.reaction.TranscriptionReaction

cobrame.util.building.add_translation_reaction(me_model, locus_id, dna_sequence, up-
date=False)

Creates and adds a TranslationReaction to the ME-model as well as the associated TranslationData

A dna_sequence is required in order to add a TranslationReaction to the ME-model

Parameters

7.1. Subpackages 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

COBRAme Documentation, Release 0.0.8

• me_model (cobra.core.model.MEModel) – The MEModel object to which the re-
action will be added

• locus_id (str) – Locus ID of RNA product. The TranslationReaction will be added as
“translation + _ + locus_id” The TranslationData will be added as “locus_id”

• dna_sequence (str) – DNA sequence of the RNA product. This string should be re-
verse transcribed if it originates on the complement strand.

• update (bool) – If True, use TranslationReaction’s update function to update and add
reaction stoichiometry

cobrame.util.building.build_reactions_from_genbank(me_model, gb_filename,
tu_frame=None, ele-
ment_types=set([’tRNA’,
‘ncRNA’, ‘rRNA’, ‘CDS’]), ver-
bose=True, frameshift_dict=None,
trna_to_codon=None, up-
date=True)

Creates and adds transcription and translation reactions using genomic information from the organism’s
genbank file. Adds in the basic requirements for these reactions. Organism specific components are added
...

Parameters

• me_model (cobrame.core.model.MEModel) – The MEModel object to which the
reaction will be added

• gb_filename (str) – Local name of the genbank file that will be used for ME-model
construction

• tu_frame (pandas.DataFrame) – DataFrame with indexes of the transcription unit
name and columns containing the transcription unit starting and stopping location on the
genome and whether the transcription unit is found on the main (+) strand or complementary
(-) strand.

If no transcription unit DataFrame is passed into the function, transcription units are added
corresponding to each transcribed gene in the genbank file.

• element_types (set) – Transcription reactions will be added to the ME-model for all
RNA feature.types in this set. This uses the nomenclature of the genbank file (gb_filename)

• verbose (bool) – If True, display metabolites that were not previously added to the
model and were thus added when creating charging reactions

• frameshift_dict (dict) – {locus_id: genome_position_of_TU}

If a locus_id is in the frameshift_dict, update it’s nucleotide sequence to account of the
frameshift

cobrame.util.building.convert_aa_codes_and_add_charging(me_model, trna_aa,
trna_to_codon, ver-
bose=True)

Adds tRNA charging reactions for all tRNAs in ME-model

Parameters

• me_model (cobra.core.model.MEModel) – The MEModel object to which the re-
action will be added

7.1. Subpackages 66

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#bool

COBRAme Documentation, Release 0.0.8

• trna_aa (dict) – Dictionary of tRNA locus ID to 3 letter codes of the amino acid that
the tRNA contributes

{tRNA identifier (locus_id): amino_acid_3_letter_code}

• trna_to_codon (dict) – Dictionary of tRNA identifier to the codon which it associates

{tRNA identifier (locus_id): codon_sequence}

• verbose (bool) – If True, display metabolites that were not previously added to the
model and were thus added when creating charging reactions

cobrame.util.building.create_transcribed_gene(me_model, locus_id, rna_type, seq,
left_pos=None, right_pos=None,
strand=None)

Creates a TranscribedGene metabolite object and adds it to the ME-model

Parameters

• me_model (cobrame.core.model.MEModel) – The MEModel object to which the
reaction will be added

• locus_id (str) – Locus ID of RNA product. The TranscribedGene will be added as
“RNA + _ + locus_id”

• left_pos (int or None) – Left position of gene on the sequence of the (+) strain

• right_pos (int or None) – Right position of gene on the sequence of the (+) strain

• seq (str) – Nucleotide sequence of RNA product. Amino acid sequence, codon counts,
etc. will be calculated based on this string.

• strand (str or None) –

– (+) if the RNA product is on the leading strand

– (-) if the RNA product is on the complementary strand

• rna_type (str) – Type of RNA of the product. tRNA, rRNA, or mRNA Used for deter-
mining how RNA product will be processed.

Returns Metabolite object for the RNA product

Return type cobrame.core.component.TranscribedGene

cobrame.util.dogma module

cobrame.util.dogma.extract_sequence(full_seq, left_pos, right_pos, strand)

cobrame.util.dogma.get_amino_acid_sequence_from_dna(dna_seq)

cobrame.util.dogma.return_frameshift_sequence(full_seq, frameshift_string)

cobrame.util.dogma.reverse_transcribe(seq)

cobrame.util.mass module

cobra.core.massbalance module

cobrame.util.massbalance.check_me_model_mass_balance(model0)

cobrame.util.massbalance.check_transcription_mass_balance(reaction)

7.1. Subpackages 67

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

cobrame.util.massbalance.elements_to_formula(obj, elements)

cobrame.util.massbalance.eval_reaction_at_growth_rate(reaction, growth_rate)

cobrame.util.massbalance.get_elements_from_process_data(reaction, process_data, el-
ements)

If a modification is required to form a functioning macromolecule, update the element dictionary accordingly.

cobrame.util.massbalance.stringify(element, number)

Module contents

7.1.3 cobrame.io package

Submodules

cobrame.io.dict module

cobrame.io.dict.get_numeric_from_string(string)

Parameters string (str) – String representation of numeric expression

Returns Numeric representation of string

Return type float or sympy expression

cobrame.io.dict.get_sympy_expression(value)
Return sympy expression from json string using sympify

mu is assumed to be positive but using sympify does not apply this assumption. The mu symbol produced from
sympify is replaced with cobrame’s mu value to ensure the expression can be used in the model.

Parameters value (str) – String representation of mu containing expression

Returns Numeric representation of string with cobrame’s mu symbol substituted

Return type sympy expression

cobrame.io.dict.me_model_from_dict(obj)
Load ME-model from its dictionary representation. This will return a full MEModel object identical to the one
saved.

Parameters obj (dict) – Dictionary representation of ME-model

Returns Full COBRAme ME-model

Return type MEModel

cobrame.io.dict.me_model_to_dict(model)
Create dictionary representation of full ME-model

Parameters model (MEModel) –

Returns Dictionary representation of ME-model

Return type dict

cobrame.io.json module

cobrame.io.json.get_schema()
Load JSON schema for ME-model JSON saving/loading

7.1. Subpackages 68

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

COBRAme Documentation, Release 0.0.8

Returns JSONSCHEMA

Return type dict

cobrame.io.json.load_json_me_model(file_name)
Load a full JSON version of the ME-model. Loading a model in this format will return a ME-model identical
to the one saved, which retains all ME-model functionality.

Parameters file_name (str or file-like object) – Filename of the JSON output or
an open json file

Returns A full ME-model

Return type cobrame.core.model.MEModel

cobrame.io.json.load_reduced_json_me_model(file_name)
Load a stripped-down JSON version of the ME-model. This will exclude all of ME-Model information except
the reaction stoichiometry information and the reaction bounds. Saving/loading a model in this format will thus
occur much quicker, but limit the ability to edit the model and use most of its features.

Parameters file_name (str or file-like object) – Filename of the JSON ME-model

Returns COBRA Model representation of the ME-model. This will not include all of the function-
ality of a MEModel but will solve identically compared to the full model.

Return type cobra.core.model.Model

cobrame.io.json.save_json_me_model(model, file_name)
Save a full JSON version of the ME-model. Saving/loading a model in this format can then be loaded to return
a ME-model identical to the one saved, which retains all ME-model functionality.

Parameters

• model (cobrame.core.model.MEModel) – A full ME-model

• file_name (str or file-like object) – Filename of the JSON output or an
open json file

cobrame.io.json.save_reduced_json_me_model(me0, file_name)
Save a stripped-down JSON version of the ME-model. This will exclude all of ME-Model information except
the reaction stoichiometry information and the reaction bounds. Saving/loading a model in this format will thus
occur much quicker, but limit the ability to edit the model and use most of its features.

Parameters

• me0 (cobrame.core.model.MEModel) – A full ME-model

• file_name (str or file-like object) – Filename of the JSON output

Module contents

7.2 Module contents

7.2. Module contents 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

70

Python Module Index

c
cobrame, 69
cobrame.core, 63
cobrame.core.component, 59
cobrame.core.model, 62
cobrame.core.processdata, 51
cobrame.core.reaction, 45
cobrame.io, 69
cobrame.io.dict, 68
cobrame.io.json, 68
cobrame.util, 68
cobrame.util.building, 63
cobrame.util.dogma, 67
cobrame.util.massbalance, 67

71

Index

Symbols
_complex_id (cobrame.core.reaction.ComplexFormation

attribute), 45
_element_contribution (SubreactionData attribute), 19
_element_contribution (co-

brame.core.processdata.SubreactionData
attribute), 55

_stoichiometry (StoichiometricData attribute), 22
_stoichiometry (cobrame.core.processdata.StoichiometricData

attribute), 54

A
add_biomass_constraints_to_model() (co-

brame.core.model.MEModel method), 62
add_biomass_from_subreactions() (co-

brame.core.reaction.MEReaction method),
46

add_complex_to_model() (in module co-
brame.util.building), 63

add_dummy_reactions() (in module co-
brame.util.building), 63

add_elongation_subreactions() (co-
brame.core.processdata.TranslationData
method), 57

add_initiation_subreactions() (co-
brame.core.processdata.TranslationData
method), 57

add_m_model_content() (in module co-
brame.util.building), 63

add_metabolic_reaction_to_model() (in module co-
brame.util.building), 64

add_model_complexes() (in module co-
brame.util.building), 64

add_reactions_from_stoichiometric_data() (in module
cobrame.util.building), 64

add_subreaction_data() (in module co-
brame.util.building), 65

add_subreactions() (cobrame.core.reaction.MEReaction
method), 46

add_termination_subreactions() (co-
brame.core.processdata.TranslationData
method), 57

add_transcription_reaction() (in module co-
brame.util.building), 65

add_translation_reaction() (in module co-
brame.util.building), 65

add_translocation_pathways() (co-
brame.core.reaction.PostTranslationReaction
method), 48

aggregation_propensity (co-
brame.core.processdata.PostTranslationData
attribute), 53

amino_acid_count (cobrame.core.processdata.TranslationData
attribute), 57

amino_acid_sequence (co-
brame.core.component.TranslatedGene at-
tribute), 61

amino_acid_sequence (co-
brame.core.processdata.TranslationData
attribute), 58

B
biomass_type (cobrame.core.processdata.PostTranslationData

attribute), 53
build_reactions_from_genbank() (in module co-

brame.util.building), 66

C
calculate_biomass_contribution() (co-

brame.core.processdata.SubreactionData
method), 55

calculate_element_contribution() (co-
brame.core.processdata.SubreactionData
method), 55

check_me_mass_balance() (co-
brame.core.reaction.MEReaction method),
47

check_me_model_mass_balance() (in module co-
brame.util.massbalance), 67

72

COBRAme Documentation, Release 0.0.8

check_transcription_mass_balance() (in module co-
brame.util.massbalance), 67

clear_metabolites() (cobrame.core.reaction.MEReaction
method), 47

cobrame (module), 69
cobrame.core (module), 63
cobrame.core.component (module), 59
cobrame.core.model (module), 62
cobrame.core.processdata (module), 51
cobrame.core.reaction (module), 45
cobrame.io (module), 69
cobrame.io.dict (module), 68
cobrame.io.json (module), 68
cobrame.util (module), 68
cobrame.util.building (module), 63
cobrame.util.dogma (module), 67
cobrame.util.massbalance (module), 67
codes_stable_rna (cobrame.core.processdata.TranscriptionData

attribute), 56
codon_count (cobrame.core.processdata.TranslationData

attribute), 58
Complex (class in cobrame.core.component), 59
complex (cobrame.core.processdata.ComplexData

attribute), 52
complex (cobrame.core.reaction.ComplexFormation at-

tribute), 45
complex_data (cobrame.core.model.MEModel attribute),

62
complex_data (cobrame.core.reaction.MetabolicReaction

attribute), 48
complex_data_id (cobrame.core.reaction.ComplexFormation

attribute), 45
complex_id (cobrame.core.processdata.ComplexData at-

tribute), 52
ComplexData (class in cobrame.core.processdata), 51
complexes (cobrame.core.component.TranslatedGene at-

tribute), 61
ComplexFormation (class in cobrame.core.reaction), 45
compute_solution_error() (co-

brame.core.model.MEModel method), 62
Constraint (class in cobrame.core.component), 59
construct_attribute_vector() (co-

brame.core.model.MEModel method), 62
construct_s_matrix() (cobrame.core.model.MEModel

method), 62
convert_aa_codes_and_add_charging() (in module co-

brame.util.building), 66
create_complex_formation() (co-

brame.core.processdata.ComplexData method),
52

create_component() (in module co-
brame.core.component), 62

create_reactions() (cobrame.core.processdata.GenericData
method), 52

create_transcribed_gene() (in module co-
brame.util.building), 67

E
element_contribution (co-

brame.core.processdata.SubreactionData
attribute), 55

elements_to_formula() (in module co-
brame.util.massbalance), 67

enzyme (cobrame.core.processdata.SubreactionData at-
tribute), 55

enzyme (SubreactionData attribute), 19
enzyme_dict (cobrame.core.processdata.TranslocationData

attribute), 58
eval_reaction_at_growth_rate() (in module co-

brame.util.massbalance), 68
excised_bases (cobrame.core.processdata.TranscriptionData

attribute), 56
extract_sequence() (in module cobrame.util.dogma), 67

F
first_codon (cobrame.core.processdata.TranslationData

attribute), 58
folding_mechanism (co-

brame.core.processdata.PostTranslationData
attribute), 53

formation (cobrame.core.processdata.ComplexData at-
tribute), 52

G
gam (cobrame.core.model.MEModel attribute), 62
generic_data (cobrame.core.model.MEModel attribute),

62
GenericComponent (class in cobrame.core.component),

59
GenericData (class in cobrame.core.processdata), 52
GenericFormationReaction (class in co-

brame.core.reaction), 46
GenerictRNA (class in cobrame.core.component), 60
get_all_usages() (cobrame.core.processdata.SubreactionData

method), 55
get_amino_acid_sequence_from_dna() (in module co-

brame.util.dogma), 67
get_complex_data() (co-

brame.core.processdata.SubreactionData
method), 55

get_components_from_ids() (co-
brame.core.reaction.MEReaction method),
47

get_elements_from_process_data() (in module co-
brame.util.massbalance), 68

get_metabolic_flux() (cobrame.core.model.MEModel
method), 62

Index 73

COBRAme Documentation, Release 0.0.8

get_numeric_from_string() (in module cobrame.io.dict),
68

get_schema() (in module cobrame.io.json), 68
get_sympy_expression() (in module cobrame.io.dict), 68
get_transcription_flux() (cobrame.core.model.MEModel

method), 62
get_translation_flux() (cobrame.core.model.MEModel

method), 62

K
k_folding (cobrame.core.processdata.PostTranslationData

attribute), 53
keff (cobrame.core.processdata.SubreactionData at-

tribute), 55
keff (cobrame.core.processdata.TranslocationData

attribute), 58
keff (cobrame.core.reaction.MetabolicReaction attribute),

47
keff (MetabolicReaction attribute), 23
keff (SubreactionData attribute), 19
keq_folding (cobrame.core.processdata.PostTranslationData

attribute), 53

L
last_codon (cobrame.core.processdata.TranslationData

attribute), 58
left_pos (cobrame.core.component.TranscribedGene at-

tribute), 61
left_pos (TranscribedGene attribute), 11
length_dependent_energy (co-

brame.core.processdata.TranslocationData
attribute), 58

load_json_me_model() (in module cobrame.io.json), 69
load_reduced_json_me_model() (in module co-

brame.io.json), 69
lower_bound (cobrame.core.processdata.StoichiometricData

attribute), 54
lower_bound (StoichiometricData attribute), 23

M
me_model_from_dict() (in module cobrame.io.dict), 68
me_model_to_dict() (in module cobrame.io.dict), 68
MEComponent (class in cobrame.core.component), 60
MEModel (class in cobrame.core.model), 62
MEReaction (class in cobrame.core.reaction), 46
metabolic_reactions (cobrame.core.component.Complex

attribute), 59
metabolic_reactions (co-

brame.core.component.TranslatedGene at-
tribute), 61

MetabolicReaction (class in cobrame.core.reaction), 47
Metabolite (class in cobrame.core.component), 60
model (cobrame.core.processdata.ProcessData attribute),

54

mRNA (cobrame.core.processdata.TranslationData at-
tribute), 57

mRNA (TranslationData attribute), 14

N
ngam (cobrame.core.model.MEModel attribute), 62
nucleotide_count (cobrame.core.component.TranscribedGene

attribute), 61
nucleotide_count (cobrame.core.processdata.TranscriptionData

attribute), 56
nucleotide_sequence (co-

brame.core.processdata.TranscriptionData
attribute), 56

nucleotide_sequence (co-
brame.core.processdata.TranslationData
attribute), 57

nucleotide_sequence (TranscriptionData attribute), 12
nucleotide_sequence (TranslationData attribute), 15

O
objective_coefficient (co-

brame.core.reaction.MEReaction attribute),
47

P
parent_reactions (cobrame.core.processdata.ProcessData

attribute), 54
posttranslation_data (cobrame.core.model.MEModel at-

tribute), 62
posttranslation_data (co-

brame.core.reaction.PostTranslationReaction
attribute), 48

PostTranslationData (class in cobrame.core.processdata),
52

PostTranslationReaction (class in cobrame.core.reaction),
48

ProcessData (class in cobrame.core.processdata), 53
ProcessedProtein (class in cobrame.core.component), 60
propensity_scaling (co-

brame.core.processdata.PostTranslationData
attribute), 53

protein (cobrame.core.processdata.TranslationData at-
tribute), 57

protein (TranslationData attribute), 14
prune() (cobrame.core.model.MEModel method), 62

R
remove_from_me_model() (co-

brame.core.component.MEComponent
method), 60

remove_genes_from_model() (co-
brame.core.model.MEModel method), 62

return_frameshift_sequence() (in module co-
brame.util.dogma), 67

Index 74

COBRAme Documentation, Release 0.0.8

reverse (cobrame.core.reaction.MetabolicReaction
attribute), 47

reverse (MetabolicReaction attribute), 23
reverse_transcribe() (in module cobrame.util.dogma), 67
Ribosome (class in cobrame.core.component), 60
right_pos (cobrame.core.component.TranscribedGene at-

tribute), 61
right_pos (TranscribedGene attribute), 11
RNA_polymerase (cobrame.core.processdata.TranscriptionData

attribute), 56
RNA_polymerase (TranscriptionData attribute), 12
RNA_products (cobrame.core.processdata.TranscriptionData

attribute), 56
RNA_products (TranscriptionData attribute), 12
RNA_types (cobrame.core.processdata.TranscriptionData

attribute), 56
RNAP (class in cobrame.core.component), 60

S
save_json_me_model() (in module cobrame.io.json), 69
save_reduced_json_me_model() (in module co-

brame.io.json), 69
set_sasa_keffs() (cobrame.core.model.MEModel

method), 62
stoichiometric_data (cobrame.core.model.MEModel at-

tribute), 62
stoichiometric_data (co-

brame.core.reaction.MetabolicReaction at-
tribute), 48

StoichiometricData (class in cobrame.core.processdata),
54

stoichiometry (cobrame.core.processdata.ComplexData
attribute), 51

stoichiometry (cobrame.core.processdata.StoichiometricData
attribute), 54

stoichiometry (cobrame.core.processdata.TranslocationData
attribute), 59

stoichiometry (ComplexData attribute), 20
strand (cobrame.core.component.TranscribedGene

attribute), 61
strand (TranscribedGene attribute), 12
stringify() (in module cobrame.util.massbalance), 68
subreaction_data (cobrame.core.model.MEModel at-

tribute), 62
SubreactionData (class in cobrame.core.processdata), 54
subreactions (cobrame.core.processdata.ComplexData at-

tribute), 52
subreactions (cobrame.core.processdata.PostTranslationData

attribute), 53
subreactions (cobrame.core.processdata.StoichiometricData

attribute), 54
subreactions (cobrame.core.processdata.TranscriptionData

attribute), 56

subreactions (cobrame.core.processdata.TranslationData
attribute), 57

subreactions (cobrame.core.processdata.tRNAData at-
tribute), 59

subreactions (ComplexData attribute), 21
subreactions (StoichiometricData attribute), 22
subreactions (TranscriptionData attribute), 12
subreactions (TranslationData attribute), 15
subreactions (tRNAData attribute), 17
subreactions_from_sequence (co-

brame.core.processdata.TranslationData
attribute), 58

SummaryVariable (class in cobrame.core.reaction), 49
surface_area (cobrame.core.processdata.PostTranslationData

attribute), 53
synthetase (cobrame.core.processdata.tRNAData at-

tribute), 59
synthetase (tRNAData attribute), 17
synthetase_keff (cobrame.core.processdata.tRNAData at-

tribute), 59
synthetase_keff (tRNAData attribute), 17

T
TranscribedGene (class in cobrame.core.component), 61
transcription_data (cobrame.core.model.MEModel

attribute), 63
transcription_data (cobrame.core.reaction.TranscriptionReaction

attribute), 49
TranscriptionData (class in cobrame.core.processdata), 56
TranscriptionReaction (class in cobrame.core.reaction),

49
TranslatedGene (class in cobrame.core.component), 61
translation_data (cobrame.core.component.TranslatedGene

attribute), 61
translation_data (cobrame.core.model.MEModel at-

tribute), 63
translation_data (cobrame.core.reaction.TranslationReaction

attribute), 50
TranslationData (class in cobrame.core.processdata), 57
TranslationReaction (class in cobrame.core.reaction), 50
translocation (cobrame.core.processdata.PostTranslationData

attribute), 53
translocation_data (cobrame.core.model.MEModel at-

tribute), 63
translocation_multipliers (co-

brame.core.processdata.PostTranslationData
attribute), 53

TranslocationData (class in cobrame.core.processdata),
58

tRNA_data (cobrame.core.model.MEModel attribute), 62
tRNA_data (cobrame.core.reaction.tRNAChargingReaction

attribute), 51
tRNAChargingReaction (class in cobrame.core.reaction),

51

Index 75

COBRAme Documentation, Release 0.0.8

tRNAData (class in cobrame.core.processdata), 59

U
unmodeled_protein (cobrame.core.model.MEModel at-

tribute), 63
unmodeled_protein_biomass (co-

brame.core.model.MEModel attribute), 63
unmodeled_protein_fraction (co-

brame.core.model.MEModel attribute), 63
unprocessed_protein (co-

brame.core.component.ProcessedProtein
attribute), 60

update() (cobrame.core.model.MEModel method), 63
update() (cobrame.core.reaction.ComplexFormation

method), 45
update() (cobrame.core.reaction.MetabolicReaction

method), 48
update() (cobrame.core.reaction.PostTranslationReaction

method), 49
update() (cobrame.core.reaction.TranscriptionReaction

method), 49
update() (cobrame.core.reaction.TranslationReaction

method), 50
update() (cobrame.core.reaction.tRNAChargingReaction

method), 51
update_parent_reactions() (co-

brame.core.processdata.ProcessData method),
54

upper_bound (cobrame.core.processdata.StoichiometricData
attribute), 54

upper_bound (StoichiometricData attribute), 22

Index 76

	ME-model Fundamentals
	Coupling Constraints
	Biomass Dilution Constraints

	COBRAme Software Architecture
	ProcessData
	MEReaction
	Overview

	Building a ME-model
	Overview
	Initializing new ME-Models
	Adding Reactions without utility functions
	Adding Reactions using utility functions

	Reaction Properties
	Metabolic Reactions
	Transcription Reactions
	Translation Reactions
	ComplexFormation Reactions

	ME-model Saving and Loading
	As a full JSON file
	As a reduced JSON file
	As a pickle file

	Coupling Constraint Derivations
	Parameters
	Derivation of mRNA coupling coefficients
	Derivation of ribosome coupling coefficients

	cobrame package
	Subpackages
	Module contents

	Indices and tables
	Python Module Index

